scholarly journals The Benzimidazole-Based Anthelmintic Parbendazole: A Repurposed Drug Candidate That Synergizes with Gemcitabine in Pancreatic Cancer

Cancers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2042 ◽  
Author(s):  
Rosalba Florio ◽  
Serena Veschi ◽  
Viviana di Giacomo ◽  
Sara Pagotto ◽  
Simone Carradori ◽  
...  

Pancreatic cancer (PC) is one of the most lethal, chemoresistant malignancies and it is of paramount importance to find more effective therapeutic agents. Repurposing of non-anticancer drugs may expand the repertoire of effective molecules. Studies on repurposing of benzimidazole-based anthelmintics in PC and on their interaction with agents approved for PC therapy are lacking. We analyzed the effects of four Food and Drug Administration (FDA)-approved benzimidazoles on AsPC-1 and Capan-2 pancreatic cancer cell line viability. Notably, parbendazole was the most potent benzimidazole affecting PC cell viability, with half maximal inhibitory concentration (IC50) values in the nanomolar range. The drug markedly inhibited proliferation, clonogenicity and migration of PC cell lines through mechanisms involving alteration of microtubule organization and formation of irregular mitotic spindles. Moreover, parbendazole interfered with cell cycle progression promoting G2/M arrest, followed by the emergence of enlarged, polyploid cells. These abnormalities, suggesting a mitotic catastrophe, culminated in PC cell apoptosis, are also associated with DNA damage in PC cell lines. Remarkably, combinations of parbendazole with gemcitabine, a drug employed as first-line treatment in PC, synergistically decreased PC cell viability. In conclusion, this is the first study providing evidence that parbendazole as a single agent, or in combination with gemcitabine, is a repurposing candidate in the currently dismal PC therapy.

2021 ◽  
Vol 14 (7) ◽  
pp. 682
Author(s):  
Jianling Bi ◽  
Garima Dixit ◽  
Yuping Zhang ◽  
Eric J. Devor ◽  
Haley A. Losh ◽  
...  

Angiogenesis plays a crucial role in tumor development and metastasis. Both bevacizumab and cediranib have demonstrated activity as single anti-angiogenic agents in endometrial cancer, though subsequent studies of bevacizumab combined with chemotherapy failed to improve outcomes compared to chemotherapy alone. Our objective was to compare the efficacy of cediranib and bevacizumab in endometrial cancer models. The cellular effects of bevacizumab and cediranib were examined in endometrial cancer cell lines using extracellular signal-related kinase (ERK) phosphorylation, ligand shedding, cell viability, and cell cycle progression as readouts. Cellular viability was also tested in eight patient-derived organoid models of endometrial cancer. Finally, we performed a phosphoproteomic array of 875 phosphoproteins to define the signaling changes related to bevacizumab versus cediranib. Cediranib but not bevacizumab blocked ligand-mediated ERK activation in endometrial cancer cells. In both cell lines and patient-derived organoids, neither bevacizumab nor cediranib alone had a notable effect on cell viability. Cediranib but not bevacizumab promoted marked cell death when combined with chemotherapy. Cell cycle analysis demonstrated an accumulation in mitosis after treatment with cediranib + chemotherapy, consistent with the abrogation of the G2/M checkpoint and subsequent mitotic catastrophe. Molecular analysis of key controllers of the G2/M cell cycle checkpoint confirmed its abrogation. Phosphoproteomic analysis revealed that bevacizumab and cediranib had both similar and unique effects on cell signaling that underlie their shared versus individual actions as anti-angiogenic agents. An anti-angiogenic tyrosine kinase inhibitor such as cediranib has the potential to be superior to bevacizumab in combination with chemotherapy.


2022 ◽  
Vol 3 (1) ◽  
pp. 176-184
Author(s):  
Shuai Gao ◽  
◽  
Fangxia Zou ◽  
Lixia Zheng ◽  
Yunjie Wang ◽  
...  

Pancreatic cancer is a rare but highly malignant cancer with few effective treatments available. Targeting cancers bearing specific genetic mutations offers a new approach for cancer therapy. PROTAC (proteolysis-targeting chimeras) is an emerging technique to design targeted therapy and increasing evidence supports its utility. This study examined the in vitro pharmacodynamics and mechanism of PROTAC K-Ras Degrader-1 (PKD-1), a PROTAC molecule, in inhibiting the proliferation of pancreatic cancer cells. We used a pancreatic cancer cell line, MIA PaCa-2 cells, to examined the binding and degradation-promoting capabilities of PKD-1 on KRAS G12C protein and further evaluated the effects of PKD-1 on cell viability, cell cycle and apoptosis. PKD-1 was able to bind to KRAS G12C protein, promoted its degradation for up to 72 h, reduced cell viability, increased cell cycle arrest and promoted cell apoptosis. Mechanistic study found that the efficacy of PKD-1 was at least partially mediated by promoting 26S proteasome degradation process. Combined, these results extended previous findings and support the potential utility of PROTAC molecules such as PKD-1 as a new treatment strategy against pancreatic cancer.


1995 ◽  
Vol 18 (3) ◽  
pp. 249-255
Author(s):  
Ilia A. Toshkov ◽  
William G. Chaney ◽  
David M. Colcher ◽  
Michael A. Hollingsworth ◽  
Troitza K. Bratanova ◽  
...  

2006 ◽  
Vol 53 (4) ◽  
pp. 789-799 ◽  
Author(s):  
Anastasiya Y Bobarykina ◽  
Dmytro O Minchenko ◽  
Iryna L Opentanova ◽  
Michel Moenner ◽  
Jaime Caro ◽  
...  

Previously we have shown that hypoxia strongly induces the expression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 and -4 (PFKFB-3 and PFKFB-4) genes in several cancer cell lines via a HIF-dependent mechanism. In this paper we studied the expression and hypoxic regulation of PFKFB-4 and PFKFB-3 mRNA as well as its correlation with HIF-1alpha, HIF-2alpha, VEGF and Glut1 mRNA expression in the pancreatic cancer cell line Panc1 and two gastric cancer cell lines MKN45 and NUGC3. This study clearly demonstrated that PFKFB-3 and PFKFB-4 mRNA are expresses in MKN45, NUGC3 and Panc1 cancers cells and that both genes are responsive to hypoxia in vitro. However, their basal level of expression and hypoxia responsiveness vary in the different cells studied. Particularly, PFKFB-3 mRNA is highly expressed in MKN45 and NUGC3 cancer cells, with the highest response to hypoxia in the NUGC3 cell line. The PFKFB-4 mRNA has a variable low basal level of expression in both gastric and pancreatic cancer cell lines. However, the highest hypoxia response of PFKFB-4 mRNA is found in the pancreatic cancer cell line Panc1. The basal level of PFKFB-4 protein expression is the highest in NUGC3 gastric cancer cell line and lowest in Panc1 cells, with the highest response to hypoxia in the pancreatic cancer cell line. Further studies showed that PFKFB-3 and PFKFB-4 gene expression was highly responsive to the hypoxia mimic dimethyloxalylglycine, a specific inhibitor of HIF-alpha hydroxylase enzymes, suggesting that the hypoxia responsiveness of PFKFB-3 and PFKFB-4 genes in these cell lines is regulated by the HIF transcription complex. The expression of VEGF and Glut1, which are known HIF-dependent genes, is also strongly induced under hypoxic conditions in gastric and pancreatic cancer cell lines. The levels of HIF-1alpha protein are increased in both gastric and pancreatic cancer cell lines under hypoxic conditions. However, the basal level of HIF-1alpha as well as HIF-2alpha mRNA expression and their hypoxia responsiveness are different in the MKN45 and NUGC3 cancer cells. Thus, the expression of HIF-1alpha mRNA is decreased in both gastric cancer cell lines treated by hypoxia or dimethyloxalylglycine, but HIF-2alpha mRNA expression is not changed significantly in NUGC3 and slightly increased in MKN45 cells. Expression of PFKFB-4 and PFKFB-3 was also studied in gastric cancers and corresponding nonmalignant tissue counterparts from the same patients on both the mRNA and protein levels. The expression of PFKFB-3 and PFKFB-4 mRNA as well as PFKFB-1 and PFKFB-2 mRNA was observed in normal human gastric tissue and was increased in malignant gastric tumors. The basal level of PFKFB-4 protein expression in gastric cancers was much higher as compared to the PFKFB-3 isoenzyme. In conclusion, this study provides evidence that PFKFB-4 and PFKFB-3 genes are also expressed in gastric and pancreatic cancer cells, they strongly respond to hypoxia via a HIF-1alpha dependent mechanism and, together with the expression of PFKFB-1 and PFKFB-2 genes, possibly have a significant role in the Warburg effect which is found in malignant cells.


2001 ◽  
Vol 120 (5) ◽  
pp. A336-A336
Author(s):  
M SHIMADA ◽  
A ANDOH ◽  
Y ARAKI ◽  
Y FUJIYAMA ◽  
T BAMBA

2019 ◽  
Vol 24 (10) ◽  
pp. 674-681
Author(s):  
Hiroki Fukuchi ◽  
Yukinobu Hayashida ◽  
Kunio Inoue ◽  
Yoshifusa Sadamura

Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2017
Author(s):  
Lital Sharvit ◽  
Rinat Bar-Shalom ◽  
Naiel Azzam ◽  
Yaniv Yechiel ◽  
Solomon Wasser ◽  
...  

Pancreatic cancer is a highly lethal disease with limited options for effective therapy and the lowest survival rate of all cancer forms. Therefore, a new, effective strategy for cancer treatment is in need. Previously, we found that a culture liquid extract of Cyathus striatus (CS) has a potent antitumor activity. In the present study, we aimed to investigate the effects of Cyathus striatus extract (CSE) on the growth of pancreatic cancer cells, both in vitro and in vivo. The proliferation assay (XTT), cell cycle analysis, Annexin/PI staining and TUNEL assay confirmed the inhibition of cell growth and induction of apoptosis by CSE. A Western blot analysis demonstrated the involvement of both the extrinsic and intrinsic apoptosis pathways. In addition, a RNAseq analysis revealed the involvement of the MAPK and P53 signaling pathways and pointed toward endoplasmic reticulum stress induced apoptosis. The anticancer activity of the CSE was also demonstrated in mice harboring pancreatic cancer cell line-derived tumor xenografts when CSE was given for 5 weeks by weekly IV injections. Our findings suggest that CSE could potentially be useful as a new strategy for treating pancreatic cancer.


Biomedicines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 149
Author(s):  
David J. Wooten ◽  
Indu Sinha ◽  
Raghu Sinha

Survival rate for pancreatic cancer remains poor and newer treatments are urgently required. Selenium, an essential trace element, offers protection against several cancer types and has not been explored much against pancreatic cancer specifically in combination with known chemotherapeutic agents. The present study was designed to investigate selenium and Gemcitabine at varying doses alone and in combination in established pancreatic cancer cell lines growing in 2D as well as 3D platforms. Comparison of multi-dimensional synergy of combinations’ (MuSyc) model and highest single agent (HSA) model provided quantitative insights into how much better the combination performed than either compound tested alone in a 2D versus 3D growth of pancreatic cancer cell lines. The outcomes of the study further showed promise in combining selenium and Gemcitabine when evaluated for apoptosis, proliferation, and ENT1 protein expression, specifically in BxPC-3 pancreatic cancer cells in vitro.


2020 ◽  
Author(s):  
Rui Lin ◽  
Xunxia Bao ◽  
Hui Wang ◽  
Sibo Zhu ◽  
Zhongyan Liu ◽  
...  

AbstractBackgroundThe mechanism of pancreatic cancer(PA) is not fully understanded. In our last report, TRPM2 plays a promising role in pancreatic cancer. However, the mechanism of TRPM2 is still unknown in this dismal disease. This study was designed to investigate the role and mechanism of TRPM2 in pancreatic cancer.MethodsTRPM2 overexpressed and siRNA plasmid were created and transfected with pancreatic cancer cell line(BxPC-3) to construct the cell model. We employed CCK-8, Transwell, scratch wound, and nude mice tumor bearing model to investigate the role of TRPM2 in pancreatic cancer. Besides, we collected the clinical data, tumor tissue sample(TT) and para-tumor sample(TP) from the pancreatic cancer patients treated in our hospital. We analyzed the mechanism of TRPM2 in pancreatic cancer by transcriptome analysis, Westernblot, and PCR.ResultsOverexpressed TRPM2 could promote pancreatic cancer in proliferation, migration, and invasion ability in no matter the cell model or nude mice tumor bearing model. TRPM2 level is highly negative correlated to the overall survival and progression-free survival time in PA patients, however, it is significantly increased in PA tissue as the tumor stage increases. The transcriptome analysis, GSEA analysis, Westernblot, and PCR results indicates TRPM2 is highly correlated with PKC/MAPK pathways.ConclusionTRPM2 could directly activate PKCα by calcium or indirectly activate PKCε and PKCδ by increased DAG in PC, which promote PC by downstream MAPK/MEK pathway activation.


Sign in / Sign up

Export Citation Format

Share Document