scholarly journals Drug Conjugates Based on a Monovalent Affibody Targeting Vector Can Efficiently Eradicate HER2 Positive Human Tumors in an Experimental Mouse Model

Cancers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 85
Author(s):  
Tianqi Xu ◽  
Haozhong Ding ◽  
Anzhelika Vorobyeva ◽  
Maryam Oroujeni ◽  
Anna Orlova ◽  
...  

The human epidermal growth factor receptor 2 (HER2) is frequently overexpressed in a variety of cancers and therapies targeting HER2 are routinely used in the clinic. Recently, small engineered scaffold proteins, such as affibody molecules, have shown promise as carriers of cytotoxic drugs, and these drug conjugates may become complements or alternatives to the current HER2-targeting therapies. Here, we investigated if a monovalent HER2-binding affibody molecule, ZHER2:2891, fused with a plasma half-life extending albumin binding domain (ABD), may be used as carrier of the cytotoxic maytansine derivate mcDM1. We found that the resulting drug conjugate, ZHER2:2891-ABD-E3-mcDM1, had strong affinity for its cognate molecular targets: HER2 and serum albumin. ZHER2:2891-ABD-E3-mcDM1 displayed potent cytotoxic activity towards cells with high HER2 expression, with IC50 values ranging from 0.6 to 33 nM. In vivo, an unspecific increase in uptake in the liver, imparted by the hydrophobic mcDM1, was counteracted by incorporation of hydrophilic and negatively charged glutamate residues near the site of mcDM1 conjugation. A dose-escalation experiment showed that increasing doses up to 15.1 mg/kg gave a proportional increase in uptake in xenografted HER2-overexpressing SKOV3 tumors, after which the tumors became saturated. Experimental therapy with four once-weekly injection of 10.3 or 15.1 mg/kg led to efficient regression of tumors in all animals and complete regression in some. Weight loss was detected for some animals in the group receiving the highest dose, suggesting that it was close to the maximum tolerated dose. In conclusion, the monovalent HER2-targeting affibody drug conjugate presented herein have potent anti-tumor activity in vivo.

2020 ◽  
Vol 6 (23) ◽  
pp. eaba6752 ◽  
Author(s):  
Zhefu Dai ◽  
Xiao-Nan Zhang ◽  
Fariborz Nasertorabi ◽  
Qinqin Cheng ◽  
Jiawei Li ◽  
...  

Most of the current antibody-drug conjugates (ADCs) in clinic are heterogeneous mixtures. To produce homogeneous ADCs, established procedures often require multiple steps or long reaction times. The introduced mutations or foreign sequences may cause high immunogenicity. Here, we explore a new concept of transforming CD38 enzymatic activity into a facile approach for generating site-specific ADCs. This was achieved through coupling bifunctional antibody-CD38 fusion proteins with designer dinucleotide-based covalent inhibitors with stably attached payloads. The resulting adenosine diphosphate–ribosyl cyclase–enabled ADC (ARC-ADC) with a drug-to-antibody ratio of 2 could be rapidly generated through single-step conjugation. The generated ARC-ADC targeting human epidermal growth factor receptor 2 (HER2) displays excellent stability and potency against HER2-positive breast cancer both in vitro and in vivo. This proof-of-concept study demonstrates a new strategy for production of site-specific ADCs. It may provide a general approach for the development of a novel class of ADCs with potentially enhanced properties.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Xuelin Xia ◽  
Xiaoyuan Yang ◽  
Wei Huang ◽  
Xiaoxia Xia ◽  
Deyue Yan

AbstractAffibody molecules are small non-immunoglobulin affinity proteins, which can precisely target to some cancer cells with specific overexpressed molecular signatures. However, the relatively short in vivo half-life of them seriously limited their application in drug targeted delivery for cancer therapy. Here an amphiphilic affibody-drug conjugate is self-assembled into nanomicelles to prolong circulation time for targeted cancer therapy. As an example of the concept, the nanoagent was prepared through molecular self-assembly of the amphiphilic conjugate of ZHER2:342-Cys with auristatin E derivate, where the affibody used is capable of binding to the human epidermal growth factor receptor 2 (HER2). Such a nanodrug not only increased the blood circulation time, but also enhanced the tumor targeting capacity (abundant affibody arms on the nanoagent surface) and the drug accumulation in tumor. As a result, this affibody-based nanoagent showed excellent antitumor activity in vivo to HER2-positive ovary and breast tumor models, which nearly eradicated both small solid tumors (about 100 mm3) and large established tumors (exceed 500  mm3). The relative tumor proliferation inhibition ratio reaches 99.8% for both models.


Cancers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 400 ◽  
Author(s):  
Seiichiro Mitani ◽  
Hisato Kawakami

Trastuzumab, a monoclonal antibody to human epidermal growth factor receptor 2 (HER2), has improved survival in patients with HER2-positive advanced gastric or gastroesophageal junction cancer (AGC). The inevitable development of resistance to trastuzumab remains a problem, however, with several treatment strategies that have proven effective in breast cancer having failed to show clinical benefit in AGC. In this review, we summarize the mechanisms underlying resistance to HER2-targeted therapy and outline past and current challenges in the treatment of HER2-positive AGC refractory to trastuzumab. We further describe novel agents such as HER2 antibody–drug conjugates that are under development and have shown promising antitumor activity in early studies.


Cancers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 3939
Author(s):  
Tianqi Xu ◽  
Anzhelika Vorobyeva ◽  
Alexey Schulga ◽  
Elena Konovalova ◽  
Olga Vorontsova ◽  
...  

Efficient treatment of disseminated ovarian cancer (OC) is challenging due to its heterogeneity and chemoresistance. Overexpression of human epidermal growth factor receptor 2 (HER2) and epithelial cell adhesion molecule (EpCAM) in approx. 30% and 70% of ovarian cancers, respectively, allows for co-targeted treatment. The clinical efficacy of the monoclonal antibody trastuzumab in patients with HER2-positive breast, gastric and gastroesophageal cancers makes it readily available as the HER2-targeting component. As the EpCAM-targeting component, we investigated the designed ankyrin repeat protein (DARPin) Ec1 fused to a truncated variant of Pseudomonas exotoxin A with reduced immunogenicity and low general toxicity (LoPE). Ec1-LoPE was radiolabeled, evaluated in ovarian cancer cells in vitro and its biodistribution and tumor-targeting properties were studied in vivo. The therapeutic efficacy of Ec1-LoPE alone and in combination with trastuzumab was studied in mice bearing EpCAM- and HER2-expressing SKOV3 xenografts. SPECT/CT imaging enabled visualization of EpCAM and HER2 expression in the tumors. Co-treatment using Ec1-LoPE and trastuzumab was more effective at reducing tumor growth and prolonged the median survival of mice compared with mice in the control and monotherapy groups. Repeated administration of Ec1-LoPE was well tolerated without signs of hepatic or kidney toxicity. Co-treatment with trastuzumab and Ec1-LoPE might be a potential therapeutic strategy for HER2- and EpCAM-positive OC.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e16059-e16059
Author(s):  
Yang Zhang ◽  
Miaozhen Qiu ◽  
Jufeng Wang ◽  
Yanqiao Zhang ◽  
Xianglin Yuan ◽  
...  

e16059 Background: ARX788 is a novel antibody drug conjugate (ADC) that consists of human epidermal growth factor receptor 2 (HER2) targeted monoclonal antibody (mAb) linked to a cytotoxic payload, AS269, a highly potent tubulin inhibitor. In a phase 1 study of ARX788 in HER2-positive advanced breast cancer (CTR20171162/ACE-Breast-01), the objective response rate (ORR) was 74 % (14/19) at 1.5 mg/kg Q3W. Here we present the safety, tolerability, and antitumor activity of ARX788 in HER2-positive advanced gastric and gastroesophageal junction (GEJ) cancer in the phase 1 (ACE-Gastric-01) study. Methods: participants with HER2+ gastric/GEJ cancer were administrated with ARX788 intravenously at dose levels of 1.3, 1.5, and 1.7 mg/kg Q3W to determine the maximum tolerated dose and recommended phase 2 dose; and to evaluate the antitumor activity. Efficacy endpoints included objective response rate (ORR) and disease control rate (DCR) per RECIST v1.1. Results: As of Jan 29, 2021, a total of 23 participants including 9 at the 1.3 mg/kg and 14 at the 1.5 mg/kg received at least one dose of ARX788. All patients were heavily treated previously. The confirmed ORR was 42.9% and 46.2% at the 1.3 and 1.5 mg/kg, respectively. As of the cut-off date, six participants were still under treatment with two of them were treated for longer than 12 months. Most AEs were grade 1 or 2 and were manageable. There were 2 drug-related grade 3 AEs and no grade 4 or 5 AEs occurred. No DLT was observed and the MTD was not reached. The dose expansion at the 1.7 mg/kg Q3W cohort is still ongoing and the mature data will be presented later. Conclusions: ARX788 was well tolerated with promising antitumor activity in patients with HER2-positive advanced gastric and GEJ adenocarcinoma. Clinical trial information: CTR20190639. [Table: see text]


Cancers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 417
Author(s):  
Xinning Wang ◽  
Aditi Shirke ◽  
Ethan Walker ◽  
Rongcan Sun ◽  
Gopolakrishnan Ramamurthy ◽  
...  

Metastatic castration-resistant prostate cancer poses a serious clinical problem with poor outcomes and remains a deadly disease. New targeted treatment options are urgently needed. PSMA is highly expressed in prostate cancer and has been an attractive biomarker for the treatment of prostate cancer. In this study, we explored the feasibility of targeted delivery of an antimitotic drug, monomethyl auristatin E (MMAE), to tumor tissue using a small-molecule based PSMA lig-and. With the aid of Cy5.5, we found that a cleavable linker is vital for the antitumor activity of the ligand–drug conjugate and have developed a new PSMA-targeting prodrug, PSMA-1-VcMMAE. In in vitro studies, PSMA-1-VcMMAE was 48-fold more potent in killing PSMA-positive PC3pip cells than killing PSMA-negative PC3flu cells. In in vivo studies, PSMA-1-VcMMAE significantly inhibited tumor growth leading to prolonged animal survival in different animal models, including metastatic prostate cancer models. Compared to anti-PSMA antibody-MMAE conjugate (PSMA-ADC) and MMAE, PSMA-1-VcMMAE had over a 10-fold improved maximum tolerated dose, resulting in improved therapeutic index. The small molecule–drug conjugates reported here can be easily synthesized and are more cost efficient than anti-body–drug conjugates. The therapeutic profile of the PSMA-1-VcMMAE encourages further clin-ical development for the treatment of advanced prostate cancer.


Biomedicines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 130
Author(s):  
Kai Chen ◽  
Yingnan Si ◽  
Jia-Shiung Guan ◽  
Zhuoxin Zhou ◽  
Seulhee Kim ◽  
...  

Glioblastomas, accounting for approximately 50% of gliomas, comprise the most aggressive, highly heterogeneous, and malignant brain tumors. The objective of this study was to develop and evaluate a new targeted therapy, i.e., highly potent natural compound verrucarin A (Ver-A), delivered with monoclonal antibody-directed extracellular vesicle (mAb-EV). First, the high surface expression of epidermal growth factor receptor (EGFR) in glioblastoma patient tissue and cell lines was confirmed using immunohistochemistry staining, flow cytometry, and Western blotting. mAb-EV-Ver-A was constructed by packing Ver-A and tagging anti-EGFR mAb to EV generated from HEK293F culture. Confocal microscopy and the In Vivo Imaging System demonstrated that mAb-EV could penetrate the blood–brain barrier, target intracranial glioblastoma xenografts, and deliver drug intracellularly. The in vitro cytotoxicity study showed IC50 values of 2–12 nM of Ver-A. The hematoxylin and eosin staining of major organs in the tolerated dose study indicated minimal systemic toxicity of mAb-EV-Ver-A. Finally, the in vivo anti-tumor efficacy study in intracranial xenograft models demonstrated that EGFR mAb-EV-Ver-A effectively inhibited glioblastoma growth, but the combination with VEGF mAb did not improve the therapeutic efficacy. This study suggested that mAb-EV is an effective drug delivery vehicle and natural Ver-A has great potential to treat glioblastoma.


2021 ◽  
Author(s):  
Haijun Wang ◽  
Dianlong Jia ◽  
Dandan Yuan ◽  
Xiaolei Yin ◽  
Fengjiao Yuan ◽  
...  

Abstract Background: Solid tumor hypoxic conditions fails to facilitate reactive oxygen species (ROS) generation and formation of DNA double-strand breaks (DSBs) induced by ionizing radiation, ultimately lead to a crucial role in radiotherapy resistance. Recently, there have been significant technical advances in nanomedicine aid to relieve hypoxia by in situ production of O2, serving as “radiosensitizer” to induce tumor cells more sensitive to ionizing radiation. However, the off-target damage of surrounding healthy tissues caused by such high-energy radiation is often unavoidable and the tumor cells at some distance from the focal spot of ionizing radiation may avoid damage. Therefore, there is an urgent need to exploit an intelligently targeted nanoplatform to integrate both precisely enhance RT-induced DNA damage and combined therapy.Results: Herein, we developed human epidermal growth factor receptor 2 (Her2)-specific dimeric affibody (ZHer2) mediated cisplatin-loaded mesoporous polydopamine/MnO2/polydopamine nanoparticles (Pt@mPDA/MnO2/PDA-ZHer2 NPs) for MRI and enhanced chemo-radiotherapy of Her2-positive ovarian tumor. These NPs are biodegradable under simulated tumor microenvironment, resulting in cisplatin accelerated release, as well as production of O2. ZHer2 produced by the E. coli expression system endowed NPs with Her2-dependent binding ability in the Her2-positive SKOV-3 cells. In vivo MRI studies revealed an obvious T1 contrast enhancement at the tumor site. Moreover, these NPs achieved efficient tumor homing and penetration, attributing to the efficient internalization and penetrability of ZHer2. Under X-Ray irradiation, these NPs exhibited the highest tumor growth inhibition effect. Immunofluorescence assay showed these NPs significantly reduced the expression of HIF-1α and improved ROS level, resulting in radiosensitization. Conclusions: The nanocarriers constructed in this study integrated Her2 targeting, diagnosis, RT sensitization, thus providing a new idea for clinical translation in tumor theranostics.


2017 ◽  
Vol 44 (6) ◽  
pp. 2158-2173 ◽  
Author(s):  
Nan Hu ◽  
Jun Feng  Yin ◽  
Ze Ji ◽  
Yidong Hong ◽  
Puyuan Wu ◽  
...  

Background/Aims: MicroRNA-21 is an oncogenic miR (oncomiR) frequently elevated in gastric cancer (GC). Overexpression of miR-21 decreases the sensitivity of GC cells to 5-fluorouridine (5-Fu) and trastuzumab, a humanized monoclonal antibody targeting human epidermal growth factor receptor 2 (HER2). Receptor-mediated endocytosis plays a crucial role in the delivery of biotherapeutics including anti-miRNA oligonucleotides (AMOs). This study is a continuation of earlier findings involving poly(ε-caprolactone) (PCL)-poly (ethylene glycol) (PEG) nanoparticles (PEG-PCL NPs), which were coated with trastuzumab to target GC with HER2 receptor over-expression using anti-miRNA-21 (AMO-21) and 5-Fu. Methods: HER-PEG-PCL NPs were prepared by one-step carbodiimide coupling using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDAc) and Sulfo-NHS in aqueous phase. Covalent coupling of amino groups at the surface of PEG-PCL with the carboxyl groups of trastuzumab was analyzed by X-ray photoelectron spectroscopy (XPS). AMO-21/5-Fu NPs were formulated by a double-emulsion solvent evaporation technique. The cell line specificity, cellular uptake and AMO-21 delivery were investigated through the rhodamine-B-labeled 6-carboxyfluorescein (FAM)-AMO-21-PEG-PCL NPs coated with or without the antibody in both Her2-positive (NUGC4) and negative GC cells (SGC7901) visualized by fluorescence microscopy. The cytotoxicity of the HER-PEG-PCL NPs encapsulating AMO-21 was evaluated by MTT and apoptosis. Real-time reverse-transcription polymerase chain reaction (RT-PCR) was used to examine miR-21 and phosphatase and tensin homolog (PTEN) and Sprouty2 expression in GC cell lines. The antitumor effects of AMO-21/5-Fu NPs were compared with other groups in xenograft gastric cancer mice. Results: The antibody conjugates significantly enhanced the cellular uptake of NPs. The AMO-21/5-Fu NPs effectively suppressed the target miRNA expression in GC cells, which further up-regulated PTEN and Sprouty2. As a result, the sensitivity of HER2-expressing gastric cancer to trastuzumab and 5-Fu were enhanced both in vitro and in vivo. The approach enhanced the targeting by trastuzumab as well as antibody-dependent cellular cytotoxicity (ADCC) of immune effector cells Conclusions: Taken together, the results provide insight into the biological and clinical potential of targeted AMO-21 and 5-Fu co-delivery using modified trastuzumab for GC treatment.


2019 ◽  
Vol 10 (14) ◽  
pp. 4048-4053 ◽  
Author(s):  
Warren Viricel ◽  
Guy Fournet ◽  
Sabine Beaumel ◽  
Emeline Perrial ◽  
Sébastien Papot ◽  
...  

A new antibody-drug conjugate (ADC) chemical drug-linker platform based on polysarcosine enables increased drug-loading, improved pharmacokinetics and exquisite in vivo potency.


Sign in / Sign up

Export Citation Format

Share Document