scholarly journals Remodeling the Tumor Myeloid Landscape to Enhance Antitumor Antibody Immunotherapies

Cancers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 4904
Author(s):  
Khiyam Hussain ◽  
Mark S. Cragg ◽  
Stephen A. Beers

Among the diverse tumor resident immune cell types, tumor-associated macrophages (TAMs) are often the most abundant, possess an anti-inflammatory phenotype, orchestrate tumor immune evasion and are frequently associated with poor prognosis. However, TAMs can also be harnessed to destroy antibody-opsonized tumor cells through the process of antibody-dependent cellular phagocytosis (ADCP). Clinically important tumor-targeting monoclonal antibodies (mAb) such as Rituximab, Herceptin and Cetuximab, function, at least in part, by inducing macrophages to eliminate tumor cells via ADCP. For IgG mAb, this is mediated by antibody-binding activating Fc gamma receptors (FcγR), with resultant phagocytic activity impacted by the level of co-engagement with the single inhibitory FcγRIIb. Approaches to enhance ADCP in the tumor microenvironment include the repolarization of TAMs to proinflammatory phenotypes or the direct augmentation of ADCP by targeting so-called ‘phagocytosis checkpoints’. Here we review the most promising new strategies targeting the cell surface molecules present on TAMs, which include the inhibition of ‘don’t eat me signals’ or targeting immunostimulatory pathways with agonistic mAb and small molecules to augment tumor-targeting mAb immunotherapies and overcome therapeutic resistance.

2021 ◽  
Vol 22 (9) ◽  
pp. 4960
Author(s):  
Natalia Guillén Díaz-Maroto ◽  
Gemma Garcia-Vicién ◽  
Giovanna Polcaro ◽  
María Bañuls ◽  
Nerea Albert ◽  
...  

Heterotypic interactions between newly transformed cells and normal surrounding cells define tumor’s fate in incipient carcinomas. Once homeostasis has been lost, normal resident fibroblasts become carcinoma-associated fibroblasts, conferring protumorogenic properties on these normal cells. Here we describe the IL1β-mediated interplay between cancer cells and normal colonic myofibroblasts (NCFs), which bestows differential sensitivity to cytotoxic drugs on tumor cells. We used NCFs, their conditioned media (CM), and cocultures with tumor cells to characterize the IL1β-mediated crosstalk between both cell types. We silenced IL1β in tumor cells to demonstrate that such cells do not exert an influence on NCFs inflammatory phenotype. Our results shows that IL1β is overexpressed in cocultured tumor cells. IL1β enables paracrine signaling in myofibroblasts, converting them into inflammatory-CAFs (iCAF). IL1β-stimulated-NCF-CM induces migration and differential sensitivity to oxaliplatin in colorectal tumor cells. Such chemoprotective effect has not been evidenced for TGFβ1-driven NCFs. IL1β induces the loss of a myofibroblastic phenotype in NCFs and acquisition of iCAF traits. In conclusion, IL1β-secreted by cancer cells modify surrounding normal fibroblasts to confer protumorogenic features on them, particularly tolerance to cytotoxic drugs. The use of IL1β-blocking agents might help to avoid the iCAF traits acquisition and consequently to counteract the protumorogenic actions these cells.


Biomedicines ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 526
Author(s):  
Volker Schirrmacher

Mitochondria are of great relevance to health, and their dysregulation is associated with major chronic diseases. Research on mitochondria—156 brand new publications from 2019 and 2020—have contributed to this review. Mitochondria have been fundamental for the evolution of complex organisms. As important and semi-autonomous organelles in cells, they can adapt their function to the needs of the respective organ. They can program their function to energy supply (e.g., to keep heart muscle cells going, life-long) or to metabolism (e.g., to support hepatocytes and liver function). The capacity of mitochondria to re-program between different options is important for all cell types that are capable of changing between a resting state and cell proliferation, such as stem cells and immune cells. Major chronic diseases are characterized by mitochondrial dysregulation. This will be exemplified by cardiovascular diseases, metabolic syndrome, neurodegenerative diseases, immune system disorders, and cancer. New strategies for intervention in chronic diseases will be presented. The tumor microenvironment can be considered a battlefield between cancer and immune defense, competing for energy supply and metabolism. Cancer cachexia is considered as a final stage of cancer progression. Nevertheless, the review will present an example of complete remission of cachexia via immune cell transfer. These findings should encourage studies along the lines of mitochondria, energy supply, and metabolism.


2020 ◽  
Vol 11 ◽  
Author(s):  
Yueyun Pan ◽  
Yinda Yu ◽  
Xiaojian Wang ◽  
Ting Zhang

Tumor-associated macrophages (TAMs) represent one of the main tumor-infiltrating immune cell types and are generally categorized into either of two functionally contrasting subtypes, namely classical activated M1 macrophages and alternatively activated M2 macrophages. The former typically exerts anti-tumor functions, including directly mediate cytotoxicity and antibody-dependent cell-mediated cytotoxicity (ADCC) to kill tumor cells; the latter can promote the occurrence and metastasis of tumor cells, inhibit T cell-mediated anti-tumor immune response, promote tumor angiogenesis, and lead to tumor progression. Both M1 and M2 macrophages have high degree of plasticity and thus can be converted into each other upon tumor microenvironment changes or therapeutic interventions. As the relationship between TAMs and malignant tumors becoming clearer, TAMs have become a promising target for developing new cancer treatment. In this review, we summarize the origin and types of TAMs, TAMs interaction with tumors and tumor microenvironment, and up-to-date treatment strategies targeting TAMs.


Biomedicines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 361
Author(s):  
Alberto Cruz-Bermúdez ◽  
Raquel Laza-Briviesca ◽  
Marta Casarrubios ◽  
Belén Sierra-Rodero ◽  
Mariano Provencio

The tumor microenvironment exhibits altered metabolic properties as a consequence of the needs of tumor cells, the natural selection of the most adapted clones, and the selfish relationship with other cell types. Beyond its role in supporting uncontrolled tumor growth, through energy and building materials obtention, metabolism is a key element controlling tumor immune evasion. Immunotherapy has revolutionized the treatment of cancer, being the first line of treatment for multiple types of malignancies. However, many patients either do not benefit from immunotherapy or eventually relapse. In this review we overview the immunoediting process with a focus on the metabolism-related elements that are responsible for increased immune evasion, either through reduced immunogenicity or increased resistance of tumor cells to the apoptotic action of immune cells. Finally, we describe the main molecules to modulate these immune evasion processes through the control of the metabolic microenvironment as well as their clinical developmental status.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 935-935 ◽  
Author(s):  
Christian Schuerch ◽  
Graham L. Barlow ◽  
Salil S. Bhate ◽  
Nikolay Samusik ◽  
Garry P. Nolan ◽  
...  

Abstract Introduction The bone marrow (BM) microenvironment consists of various cell types such as mesenchymal stromal cells, endothelial cells, osteoblastic cells and multiple immune cell types including mature myeloid cells and lymphocytes. Recent studies have shown that leukemias can create and maintain a leukemia-supporting BM microenvironment, and vice versa, a dysfunctional BM microenvironment can contribute to leukemia development and progression. Moreover, in tumors the microenvironment is often immunosuppressive and restrains effective anti-tumoral immune responses by adaptive and innate immunity. A better understanding of the precise localization of microenvironmental and immune cell types in intact tissue, and how they physically interact with each other and with tumor cells, will improve our understanding of the mechanisms by which cancer reprograms its microenvironment and may form the basis for novel immunotherapies. Methods CO-Detection by antibody indEXing (CODEX) is a multiplex fluorescence microscopy platform based on DNA-conjugated antibodies that allows the analysis of 50+ markers in a single tissue section. After staining with an antibody cocktail, tissues are imaged in a multi-cycle reaction using a microfluidics system and a fluorescence microscope with a computer automated X/Y/Z stage. DNA-conjugated antibodies are rendered visible using complementary fluorescent DNA probes, followed by imaging, probe stripping, washing and re-rendering. This process is repeated until all the antibodies present in the initial cocktail have been rendered and imaged. Here, we used CODEX to analyze intact BM at the single-cell level (~200nm resolution) during leukemic progression. Chronic myeloid leukemia (CML)-like disease was induced in non-irradiated mice using BCR-ABL1-GFP retrovirus. Tissue sections of femoral bones harvested at different time points after leukemia onset were stained using a 50+ marker CODEX antibody panel to simultaneously identify hematopoietic and leukemic stem and progenitor cells, multiple BM microenvironmental cell types, myeloid and lymphoid cells as well as functional markers. Results We have built an integrated computational pipeline for the analysis of high-dimensional CODEX data that enables the identification and characterization of BM cell types as well as their spatial organization in situ. Raw images were concatenated and aligned using Hoechst nuclear stain as a reference, followed by deconvolution, segmentation, marker expression quantification and spatial compensation. Exported data were clustered in an unsupervised manner using VorteX algorithm, which identified 28 distinct cellular clusters based on marker expression values. All major BM compartments including stromal (vascular, pericytes, osteoblastic), lymphoid (T and B cell subsets), myeloid (megakaryocytes, macrophages, dendritic cells, granulocytes) and progenitor cell types, as well as leukemic cells, were represented. During leukemic progression, the BM microenvironment was dramatically rearranged. Besides the expected growth of the leukemic clone, we observed a massive increase in vascular and osteoblastic cell types, whereas immune cell clusters were significantly reduced. Interestingly, CD71, the transferrin receptor, was strongly up-regulated on tumor cells in advanced leukemia, indicating towards a role for iron metabolism in malignant progression. Furthermore, hierarchical clustering of tissue regions based on cellular composition using X/Y/Z positional information pointed towards the emergence of specific cell-cell interaction modules that developed during leukemic progression, including mutual attraction between B cells and central arterioles. Conclusions High-dimensional imaging of the BM microenvironment by CODEX allows studying the abundance and distribution of cellular elements that are often underestimated or missed by traditional flow cytometry, such as stromal cells, vasculature and megakaryocytes. Importantly, CODEX identifies single cells in their tissue context during leukemic progression and facilitates the discovery of novel cell-cell interactions and cell types as well as unexpected marker constellations. Disclosures Samusik: Akoya Biosciences: Consultancy, Equity Ownership, Honoraria, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties. Nolan:Akoya Biosciences: Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties. Goltsev:Akoya Biosciences: Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties.


2018 ◽  
Vol 1 (2) ◽  
pp. 55-63 ◽  
Author(s):  
Alexander H Staudacher ◽  
Vasilios Liapis ◽  
Michael P Brown

ABSTRACT Solid tumors are inherently difficult to treat because of large regions of hypoxia and are often chemotherapy- or radiotherapy-resistant. It seems that cancer stem cells reside in hypoxic and adjacent necrotic tumor areas. Therefore, new treatments that are highly selective for tumors and can eradicate cells in both hypoxic and necrotic tumor regions are desirable. Antibody α-radioconjugates couple an α-emitting radionuclide with the specificity of a tumor-targeting monoclonal antibody. The large mass and energy of α-particles result in radiation dose delivery within a smaller area independent of oxygen concentration, thus matching key criteria for killing hypoxic tumor cells. With advances in radionuclide production and chelation chemistry, α-radioconjugate therapy is regaining interest as a cancer therapy. Here, we will review current literature examining radioconjugate therapy specifically targeting necrotic and hypoxic tumor cells and outline how α-radioconjugate therapy could be used to treat tumor regions harboring more resistant cancer cell types. Statement of Significance Tumor-targeting antibodies are excellent vehicles for the delivery of toxic payloads directly to the tumor site. Tumor hypoxia and necrosis promote treatment recurrence, resistance, and metastasis. Targeting these areas with antibody α-radioconjugates would aid in overcoming treatment resistance.


2020 ◽  
Vol 9 (1) ◽  
pp. 241 ◽  
Author(s):  
Ruxandra Sava ◽  
Carl Pepine ◽  
Keith March

Over 26 million people worldwide suffer from heart failure, a disease associated with a 1 year mortality rate of 22%. Half of these patients present heart failure with preserved ejection fraction (HFpEF), for which there is no available therapy to improve prognosis. HFpEF is strongly associated with aging, inflammation, and comorbid burden, which are thought to play causal roles in disease development. Mesenchymal stromal/stem cells (MSCs) have potent immunomodulatory actions and promote tissue healing, thus representing an attractive therapeutic option in HFpEF. In this review, we summarize recent data suggesting that a two-hit model of immune dysregulation lies at the heart of the HFpEF. A first hit is represented by genetic mutations associated with clonal hematopoiesis of indeterminate potential (CHIP), which skew immune cells toward a pro-inflammatory phenotype, are associated with HFpEF development in animal models, and with immune dysregulation and risk of HF hospitalization in patients. A second hit is induced by cardiovascular risk factors, which cause subclinical cardiac dysfunction and production of danger signals. In mice, these attract proinflammatory macrophages, Th1 and Th17 cells into the myocardium, where they are required for the development of HFpEF. MSCs have been shown to reduce the pro-inflammatory activity of immune cell types involved in murine HFpEF in vitro, and to reduce myocardial fibrosis and improve diastolic function in vivo, thus they may efficiently target immune dysregulation in HFpEF and stop disease progression.


2022 ◽  
Vol 12 ◽  
Author(s):  
Daniel G. Bunis ◽  
Wanxin Wang ◽  
Júlia Vallvé-Juanico ◽  
Sahar Houshdaran ◽  
Sushmita Sen ◽  
...  

The uterine lining (endometrium) exhibits a pro-inflammatory phenotype in women with endometriosis, resulting in pain, infertility, and poor pregnancy outcomes. The full complement of cell types contributing to this phenotype has yet to be identified, as most studies have focused on bulk tissue or select cell populations. Herein, through integrating whole-tissue deconvolution and single-cell RNAseq, we comprehensively characterized immune and nonimmune cell types in the endometrium of women with or without disease and their dynamic changes across the menstrual cycle. We designed metrics to evaluate specificity of deconvolution signatures that resulted in single-cell identification of 13 novel signatures for immune cell subtypes in healthy endometrium. Guided by statistical metrics, we identified contributions of endometrial epithelial, endothelial, plasmacytoid dendritic cells, classical dendritic cells, monocytes, macrophages, and granulocytes to the endometrial pro-inflammatory phenotype, underscoring roles for nonimmune as well as immune cells to the dysfunctionality of this tissue.


2010 ◽  
Vol 184 (12) ◽  
pp. 6658-6669 ◽  
Author(s):  
Roberta Galli ◽  
Donatella Starace ◽  
Roberta Busà ◽  
Daniela F. Angelini ◽  
Alessio Paone ◽  
...  

2021 ◽  
Author(s):  
Daniel Bunis ◽  
Wanxin Wang ◽  
Júlia Vallvé-Juanico ◽  
Sahar Houshdaran ◽  
Sushmita Sen ◽  
...  

AbstractThe uterine lining (endometrium) exhibits a pro-inflammatory phenotype in women with endometriosis, resulting in pain, infertility, and poor pregnancy outcomes. The full complement of cell types contributing to this phenotype has yet to be identified, as most studies have focused on bulk tissue or select cell populations. Herein, through integrating whole-tissue deconvolution and single cell RNAseq, we comprehensively characterized immune and nonimmune cell types in endometrium of women with or without disease and their dynamic changes across the menstrual cycle. We designed metrics to evaluate specificity of deconvolution signatures that resulted in single cell identification of 13 novel signatures for immune cell subtypes in healthy endometrium. Guided by statistical metrics, we identified contributions of endometrial epithelial, endothelial, plasmacytoid dendritic cells, classical dendritic cells, monocytes, macrophages, and granulocytes to the endometrial pro-inflammatory phenotype, underscoring roles for nonimmune as well as immune cells to the dysfunctionality of this tissue.Teaser SentenceCell type deconvolution and single cell RNAseq analysis identify altered endometrial cellular compositions in women with endometriosis


Sign in / Sign up

Export Citation Format

Share Document