scholarly journals Reduction of Cell Proliferation by Acute C2H6O Exposure

Cancers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 4999
Author(s):  
Silvia Baldari ◽  
Isabella Manni ◽  
Giuliana Di Rocco ◽  
Francesca Paolini ◽  
Belinda Palermo ◽  
...  

Endogenous acetaldehyde production from the metabolism of ingested alcohol exposes hematopoietic progenitor cells to increased genotoxic risk. To develop possible therapeutic strategies to prevent or reverse alcohol abuse effects, it would be critical to determine the temporal progression of acute ethanol toxicity on progenitor cell numbers and proliferative status. We followed the variation of the cell proliferation rate in bone marrow and spleen in response to acute ethanol intoxication in the MITO-Luc mouse, in which NF-Y-dependent cell proliferation can be assessed in vivo by non-invasive bioluminescent imaging. One week after ethanol administration, bioluminescent signals in bone marrow and spleen decreased below the level corresponding to physiological proliferation, and they progressively resumed to pre-treatment values in approximately 4 weeks. Boosting acetaldehyde catabolism by administration of an aldehyde dehydrogenase activity activator or administration of polyphenols with antioxidant activity partially restored bone marrow cells’ physiological proliferation. These results indicate that in this mouse model, bioluminescent alteration reflects the reduction of the physiological proliferation rate of bone marrow progenitor cells due to the toxic effect of aldehydes generated by alcohol oxidation. In summary, this study presents a novel view of the impact of acute alcohol intake on bone marrow cell proliferation in vivo.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1224-1224
Author(s):  
Jerry C. Cheng ◽  
Dejah Judelson ◽  
Kentaro Kinjo ◽  
Jenny Chang ◽  
Elliot Landaw ◽  
...  

Abstract The cAMP Response Element Binding Protein, CREB, is a transcription factor that regulates cell proliferation, memory, and glucose metabolism. We previously demonstrated that CREB overexpression is associated with an increased risk of relapse in a small cohort of adult acute myeloid leukemia (AML) patients. Transgenic mice that overexpress CREB in myeloid cells develop myeloproliferative/myelodysplastic syndrome after one year. Bone marrow cells from these mice have increased self-renewal and proliferation. To study the expression of CREB in normal hematopoiesis, we performed quantitative real-time PCR in both mouse and human hematopoietic stem cells (HSCs). CREB expression was highest in the lineage negative population and was expressed in mouse HSCs, common myeloid progenitors, granulocyte/monocyte progenitors, megakaryocyte/erythroid progenitors, and in human CD34+38- cells. To understand the requirement of CREB in normal HSCs and myeloid leukemia cells, we inhibited CREB expression using RNA interference in vitro and in vivo. Bone marrow progenitor cells infected with CREB shRNA lentivirus demonstrated a 5-fold decrease in CFU-GM but increased Gr-1/Mac-1+ cells compared to vector control infected cells (p<0.05). There were fewer terminally differentiated Mac-1+ cells in the CREB shRNA transduced cells (30%) compared to vector control (50%), suggesting that CREB is critical for both myeloid cell proliferation and differentiation. CREB downregulation also resulted in increased apoptosis of mouse bone marrow progenitor cells. Given our in vitro results, we transplanted sublethally irradiated mice with mouse bone marrow cells transduced with CREB or scrambled shRNA. At 5 weeks post-transplant, we observed increased Gr-1+/Mac-1+ cells in mice infused with CREB shRNA transduced bone marrow compared to controls. After 12 weeks post-transplant, there was no difference in hematopoietic reconstitution or in the percentage of cells expressing Gr-1+, Mac-1+, Gr-1/Mac-1+, B22-+, CD3+, Ter119+, or HSCs markers, suggesting that CREB is not required for HSC engraftment. To study the effects of CREB knockdown in myeloid leukemia cells, K562 and TF-1 cells were infected with CREB shRNA lentivirus, sorted for GFP expression, and analyzed for CREB expression and proliferation. Within 72 hours, cells transduced with CREB shRNA demonstrated decreased proliferation and survival with increased apoptosis. In cell cycle experiments, we observed increased numbers of cells in G1 and G2/M with CREB downregulation. Expression of cyclins A1 and D, which are known target genes of CREB, was statistically significantly decreased in TF-1 and K562 cells transduced with CREB shRNA lentivirus compared to controls. To study the in vivo effects of CREB knockdown on leukemic progression, we injected SCID mice with Ba/F3 cells expressing bcr-abl or bcr-abl with the T315I mutation and the luciferase reporter gene. Cells were transduced with either CREB or scrambled shRNA. Disease progression was monitored using bioluminescence imaging. The median survival of mice injected with CREB shRNA transduced Ba/F3 bcr-abl or bcr-abl with the T315I mutation was increased with CREB downregulation compared to controls (p<0.05). Our results demonstrate that CREB is a critical regulator of normal and neoplastic hematopoiesis both in vitro and in vivo.


Blood ◽  
1996 ◽  
Vol 87 (10) ◽  
pp. 4136-4142 ◽  
Author(s):  
I Kawashima ◽  
ED Zanjani ◽  
G Almaida-Porada ◽  
AW Flake ◽  
H Zeng ◽  
...  

Using in utero transplantation into fetal sheep, we examined the capability of human bone marrow CD34+ cells fractionated based on Kit protein expression to provide long-term in vivo engraftment. Twelve hundred to 5,000 CD34+ Kit-, CD34+ Kit(low), and CD34+ Kit(high) cells were injected into a total of 14 preimmune fetal sheep recipients using the amniotic bubble technique. Six fetuses were killed in utero 1.5 months after bone marrow cell transplantation. Two fetuses receiving CD34+ Kit(low) cells showed signs of engraftment according to analysis of CD45+ cells in their bone marrow cells and karyotype studies of the colonies grown in methylcellulose culture. In contrast, two fetuses receiving CD34+ Kit(high) cells and two fetuses receiving CD34+ Kit- cells failed to show evidence of significant engraftment. Two fetuses were absorbed. A total of six fetuses receiving different cell populations were allowed to proceed to term, and the newborn sheep were serially examined for the presence of chimerism. Again, only the two sheep receiving CD34+ Kit(low) cells exhibited signs of engraftment upon serial examination. Earlier in studies of murine hematopoiesis, we have shown stage-specific changes in Kit expression by the progenitors. The studies of human cells reported here are in agreement with observations in mice, and indicate that human hematopoietic stem cells are enriched in the Kit(low) population.


2006 ◽  
Vol 291 (5) ◽  
pp. C1049-C1055 ◽  
Author(s):  
Takashi Kawasaki ◽  
Mashkoor A. Choudhry ◽  
Martin G. Schwacha ◽  
Kirby I. Bland ◽  
Irshad H. Chaudry

Traumatic and/or surgical injury as well as hemorrhage induces profound suppression of cellular immunity. Although local anesthetics have been shown to impair immune responses, it remains unclear whether lidocaine affects lymphocyte functions following trauma-hemorrhage (T-H). We hypothesized that lidocaine will potentiate the suppression of lymphocyte functions after T-H. To test this, we randomly assigned male C3H/HeN (6–8 wk) mice to sham operation or T-H. T-H was induced by midline laparotomy and ∼90 min of hemorrhagic shock (blood pressure 35 mmHg), followed by fluid resuscitation (4× shed blood volume in the form of Ringer lactate). Two hours later, the mice were killed and splenocytes and bone marrow cells were isolated. The effects of lidocaine on concanavalin A-stimulated splenocyte proliferation and cytokine production in both sham-operated and T-H mice were assessed. The effects of lidocaine on LPS-stimulated bone marrow cell proliferation and cytokine production were also assessed. The results indicate that T-H suppresses cell proliferation, Th1 cytokine production, and MAPK activation in splenocytes. In contrast, cell proliferation, cytokine production, and MAPK activation in bone marrow cells were significantly higher 2 h after T-H compared with shams. Lidocaine depressed immune responses in splenocytes; however, it had no effect in bone marrow cells in either sham or T-H mice. The enhanced immunosuppressive effects of lidocaine could contribute to the host's enhanced susceptibility to infection following T-H.


Blood ◽  
2000 ◽  
Vol 95 (2) ◽  
pp. 700-704 ◽  
Author(s):  
Kimberly A. Gush ◽  
Kai-Ling Fu ◽  
Markus Grompe ◽  
Christopher E. Walsh

Fanconi anemia (FA) is a genetic disorder characterized by bone marrow failure, congenital anomalies, and a predisposition to malignancy. FA cells demonstrate hypersensitivity to DNA cross-linking agents, such as mitomycin C (MMC). Mice with a targeted disruption of the FANCC gene (fancc −/− nullizygous mice) exhibit many of the characteristic features of FA and provide a valuable tool for testing novel therapeutic strategies. We have exploited the inherent hypersensitivity offancc −/− hematopoietic cells to assay for phenotypic correction following transfer of the FANCC complementary DNA (cDNA) into bone marrow cells. Murine fancc −/− bone marrow cells were transduced with the use of retrovirus carrying the humanfancc cDNA and injected into lethally irradiated recipients. Mitomycin C (MMC) dosing, known to induce pancytopenia, was used to challenge the transplanted animals. Phenotypic correction was determined by assessment of peripheral blood counts. Mice that received cells transduced with virus carrying the wild-type gene maintained normal blood counts following MMC administration. All nullizygous control animals receiving MMC exhibited pancytopenia shortly before death. Clonogenic assay and polymerase chain reaction analysis confirmed gene transfer of progenitor cells. These results indicate that selective pressure promotes in vivo enrichment offancc-transduced hematopoietic stem/progenitor cells. In addition, MMC resistance coupled with detection of the transgene in secondary recipients suggests transduction and phenotypic correction of long-term repopulating stem cells.


Blood ◽  
1996 ◽  
Vol 88 (8) ◽  
pp. 2859-2870 ◽  
Author(s):  
OJ Borge ◽  
V Ramsfjell ◽  
OP Veiby ◽  
MJ Jr Murphy ◽  
S Lok ◽  
...  

The recently cloned c-mpl ligand, thrombopoietin (Tpo), has been extensively characterized with regard to its ability to stimulate the growth, development, and ploidy of megakaryocyte progenitor cells and platelet production in vitro and in vivo. Primitive hematopoietic progenitors have been shown to express c-mpl, the receptor for Tpo. In the present study, we show that Tpo efficiently promotes the viability of a subpopulation of Lin-Sca-1+ bone marrow progenitor cells. The ability of Tpo to maintain viable Lin-Sca-1+ progenitors was comparable to that of granulocyte colony-stimulating factor and interleukin-1, whereas stem cell factor (SCF) promoted the viability of a higher number of Lin-Sca-1+ progenitor cells when incubated for 40 hours. However, after prolonged (> 40 hours) preincubation, the viability-promoting effect of Tpo was similar to that of SCF. An increased number of progenitors surviving in response to Tpo had megakaryocyte potential (37%), although almost all of the progenitors produced other myeloid cell lineages as well, suggesting that Tpo acts to promote the viability of multipotent progenitors. The ability of Tpo to promote viability of Lin-Sca-1+ progenitor cells was observed when cells were plated at a concentration of 1 cell per well in fetal calf serum-supplemented and serum-depleted medium. Finally, the DNA strand breakage elongation assay showed that Tpo inhibits apoptosis of Lin-Sca-1+ bone marrow cells. Thus, Tpo has a potent ability to promote the viability and suppress apoptosis of primitive multipotent progenitor cells.


Blood ◽  
1982 ◽  
Vol 59 (2) ◽  
pp. 408-420 ◽  
Author(s):  
G Pigoli ◽  
A Waheed ◽  
RK Shadduck

Abstract Radioiodinated L-cell-derived colony-stimulating factor (CSF) was used to characterize the binding reaction to murine bone marrow cells. The major increment in cell-associated radioactivity occurred over 24 hr incubation at 37 degrees C, but virtually no binding was observed at 4 degrees C. The reaction was saturable with approximately 1 ng/ml of purified CSF. Unlabeled CSF prevented the binding, whereas a number of other hormones and proteins did not compete for CSF uptake. Further specificity studies showed virtually no binding to human bone marrow, which is unresponsive to this form of murine CSF. Minimal CSF uptake was noted with murine peritoneal macrophages, but virtually no binding was detected with thymic, lymph node, liver, or kidney cells. The marrow cell interaction with tracer appeared to require a new protein synthesis, as the binding was prevented by cycloheximide or puromycin. Preincubation of marrow cells in medium devoid of CSF increased the degree of binding after 1 hr exposure to the tracer. This suggests that CSF binding sites may be occupied or perhaps decreased in response to ambient levels of CSF in vivo. Approximately 70% of the bound radioactivity was detected in the cytoplasm at 24 hr. This material was partially degraded as judged by a decrease in molecular weight from approximately 62,000 to 2 peaks of approximately 32,000 and approximately 49,000, but 72% of the binding activity was retained. After plateau binding was achieved, greater than 80% of the radioactivity released into the medium was degraded into biologically inactive peptides with molecular weights less than 10,000. These findings suggest that the interaction of CSF with marrow cells is characterized by binding with subsequent internalization and metabolic degradation into portions of the molecule that are devoid of biologic activity.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1293-1293
Author(s):  
Hong Qian ◽  
Sten Eirik W. Jacobsen ◽  
Marja Ekblom

Abstract Within the bone marrow environment, adhesive interactions between stromal cells and extracellular matrix molecules are required for stem and progenitor cell survival, proliferation and differentiation as well as their transmigration between bone marrow (BM) and the circulation. This regulation is mediated by cell surface adhesion receptors. In experimental mouse stem cell transplantation models, several classes of cell adhesion receptors have been shown to be involved in the homing and engraftment of stem and progenitor cells in BM. We have previously found that integrin a6 mediates human hematopoietic stem and progenitor cell adhesion to and migration on its specific ligands, laminin-8 and laminin-10/11 in vitro (Gu et al, Blood, 2003; 101:877). Using FACS analysis, the integrin a6 chain was now found to be ubiquitously (>95%) expressed in mouse hematopoietic stem and progenitor cells (lin−Sca-1+c-Kit+, lin−Sca-1+c-Kit+CD34+) both in adult bone marrow and in fetal liver. In vitro, about 70% of mouse BM lin−Sca-1+c-Kit+ cells adhered to laminin-10/11 and 40% adhered to laminin-8. This adhesion was mediated by integrin a6b1 receptor, as shown by functional blocking monoclonal antibodies. We also used a functional blocking monoclonal antibody (GoH3) against integrin a6 to analyse the role of the integrin a6 receptor for the in vivo homing of hematopoietic stem and progenitor cells. We found that the integrin a6 antibody inhibited the homing of bone marrow progenitors (CFU-C) into BM of lethally irradiated recipients. The number of homed CFU-C was reduced by about 40% as compared to cells incubated with an isotype matched control antibody. To study homing of long-term repopulating stem cells (LTR), antibody treated bone marrow cells were first injected intravenously into lethally irradiated primary recipients. After three hours, bone marrow cells of the primary recipients were analysed by competitive repopulation assay in secondary recipients. Blood analysis 16 weeks after transplantation revealed an 80% reduction of stem cell activity of integrin a6 antibody treated cells as compared to cells treated with control antibody. These results suggest that integrin a6 plays an important role for hematopoietic stem and progenitor cell homing in vivo.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3171-3171
Author(s):  
Yue Si ◽  
Cordula Leurs ◽  
Edward Srour ◽  
Samantha Ciccone ◽  
Helmut Hanenberg ◽  
...  

Abstract Fanconi anemia (FA) is a complex autosomal recessive genetic disorder characterized within the hematological system by progressive bone marrow aplasia, a high propensity to develop acute myeloid leukemia, and hypersensitivity to alkylating agents including mitomycin c. The identification of individual FA genes raises the potential of using gene transfer technology to express/introduce the functional cDNA in/into deficient autologous stem cells. We have previously shown that in the absence of genetic correction with a retroviral mediated Fancc transgene, ex vivo culture of Fancc−/− stem/progenitor cells (HSPC) predisposes uncorrected Fancc−/− HSPC cells to clonal hematopoiesis (Haneline, Blood 2003). Therefore we examined the potential of a helper-free human foamy virus (HFV) derived construct that encodes both the human FANCC and EGFP transgenes to transduce murine Fancc−/− HSC in the absence of prestimulation. In initial experiments, we determined that 40–80% of progenitors were transduced following a single overnight HFV infection using a 20:1 moiety of infection. Subsequent studies demonstrated that HFV efficiently transduced primitive hematopoietic progenitors in G0 and G1 phases of the cell cycle as evidenced both by using multicolor fluorescence activated cell sorting and subsequent culture of sorted cell populations in high proliferating potential (HPP-CFC) and low proliferating potential colony forming assays. Aliquots of HFV transduced cells that were transduced with the construct encoding both Fancc and EGFP, or the reporter transgene only were transplanted into irradiated recipient mice. Four months following transplantation, bone marrow cells were isolated from the reconstituted recipients and clonogenic assays were established in a range of mitomycin c (MMC) concentrations. In these experiments, the MMC hypersensitivity of Fancc−/− progenitors was corrected to wild-type levels. To assess quantitatively the potential of HFV expressed FANCC to correct stem cell repopulating ability, we next utilized the competitive repopulating assay. In two replicate experiments, we determined that the repopulating activity of HFV-transduced Fancc−/− stem cells was comparable to wildtype controls six months following transplantation in primary and secondary recipients. Collectively, these data provide in vivo evidence that the HFV vector is an efficient vehicle for introducing a functional hFANCC transgene into quiescent Fancc−/− HSC in the absence of prestimulation and for complementing the cellular FA defect in vitro and in vivo.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3401-3401
Author(s):  
Rebecca L Porter ◽  
Mary A Georger ◽  
Laura M Calvi

Abstract Abstract 3401 Hematopoietic stem and progenitor cells (HSPCs) are responsible for the continual production of all mature blood cells during homeostasis and times of stress. These cells are known to be regulated in part by the bone marrow microenvironment in which they reside. We have previously reported that the microenvironmentally-produced factor Prostaglandin E2 (PGE2) expands HSPCs when administered systemically in naïve mice (Porter, Frisch et. al., Blood, 2009). However, the mechanism mediating this expansion remains unclear. Here, we demonstrate that in vivo PGE2 treatment inhibits apoptosis of HSPCs in naïve mice, as measured by Annexin V staining (p=0.0083, n=6–7 mice/group) and detection of active-Caspase 3 (p=0.01, n=6–7 mice/group). These data suggest that inhibition of apoptosis is at least one mechanism by which PGE2 expands HSPCs. Since PGE2 is a local mediator of injury and is known to play a protective role in other cell types, we hypothesized that it could be an important microenvironmental regulator of HSPCs during times of injury. Thus, these studies explored the role of PGE2 signaling in the bone marrow following myelosuppressive injury using a radiation injury model. Endogenous PGE2 levels in the bone marrow increased 2.9-fold in response to a sub-lethal dose of 6.5 Gy total body irradiation (TBI)(p=0.0004, n=3–11 mice/group). This increase in PGE2 correlated with up-regulation of microenvironmental Cyclooxygenase-2 (Cox-2) mRNA (p=0.0048) and protein levels at 24 and 72 hr post-TBI, respectively. Further augmentation of prostaglandin signaling following 6.5 Gy TBI by administration of exogenous 16,16-dimethyl-PGE2 (dmPGE2) enhanced the survival of functional HSPCs acutely after injury. At 24 hr post-TBI, the bone marrow of dmPGE2-treated animals contained significantly more LSK cells (p=0.0037, n=13 mice/group) and colony forming unit-spleen cells (p=0.037, n=5 mice/group). Competitive transplantation assays at 72 hr post-TBI demonstrated that bone marrow cells from irradiated dmPGE2-treated mice exhibited increased repopulating activity compared with cells from vehicle-treated mice. Taken together, these results indicate that dmPGE2 treatment post-TBI increases survival of functional HSPCs. Since PGE2 can inhibit apoptosis of HSPCs in naïve mice, the effect of dmPGE2 post-TBI on apoptosis was also investigated. HSPCs isolated from mice 24 hr post-TBI demonstrated statistically significant down-regulation of several pro-apoptotic genes and up-regulation of anti-apoptotic genes in dmPGE2-treated animals (3 separate experiments with n=4–8 mice/group in each), suggesting that dmPGE2 initiates an anti-apoptotic program in HSPCs following injury. Notably, there was no significant change in expression of the anti-apoptotic gene Survivin, which has previously been reported to increase in response to ex vivo dmPGE2 treatment of bone marrow cells (Hoggatt et. al., Blood, 2009), suggesting differential effects of dmPGE2 in vivo and/or in an injury setting. Additionally, to ensure that this inhibition of apoptosis was not merely increasing survival of damaged and non-functional HSPCs, the effect of early treatment with dmPGE2 post-TBI on hematopoietic recovery was assayed by monitoring peripheral blood counts. Interestingly, dmPGE2 treatment in the first 72 hr post-TBI significantly accelerated recovery of platelet levels and hematocrit compared with injured vehicle-treated mice (n=12 mice/group). Immunohistochemical analysis of the bone marrow of dmPGE2-treated mice also exhibited a dramatic activation of Cox-2 in the bone marrow microenvironment. This suggests that the beneficial effect of dmPGE2 treatment following injury may occur, both through direct stimulation of hematopoietic cells and also via activation of the HSC niche. In summary, these data indicate that PGE2 is a critical microenvironmental regulator of hematopoietic cells in response to injury. Exploitation of the dmPGE2-induced initiation of an anti-apoptotic program in HSPCs may represent a useful method to increase survival of these cells after sub-lethal radiation injury. Further, amplification of prostaglandin signaling by treatment with PGE2 agonists may also represent a novel approach to meaningfully accelerate recovery of peripheral blood counts in patients with hematopoietic system injury during a vulnerable time when few therapeutic options are currently available. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 513-513
Author(s):  
Pekka Jaako ◽  
Shubhranshu Debnath ◽  
Karin Olsson ◽  
Axel Schambach ◽  
Christopher Baum ◽  
...  

Abstract Abstract 513 Diamond-Blackfan anemia (DBA) is a congenital erythroid hypoplasia associated with physical abnormalities and predisposition to cancer. Mutations in genes that encode ribosomal proteins have been identified in approximately 60–70 % of the patients. Among these genes, ribosomal protein S19 (RPS19) is the most common DBA gene (25 % of the cases). Current DBA therapies involve risks for serious side effects and a high proportion of deaths are treatment-related underscoring the need for novel therapies. We have previously demonstrated that enforced expression of RPS19 improves the proliferation, erythroid colony-forming potential and differentiation of patient derived RPS19-deficient hematopoietic progenitor cells in vitro (Hamaguchi, Blood 2002; Hamaguchi, Mol Ther 2003). Furthermore, RPS19 overexpression enhances the engraftment and erythroid differentiation of patient-derived hematopoietic stem and progenitor cells when transplanted into immunocompromised mice (Flygare, Exp Hematol 2008). Collectively these studies suggest the feasibility of gene therapy in the treatment of RPS19-deficient DBA. In the current project we have assessed the therapeutic efficacy of gene therapy using a mouse model for RPS19-deficient DBA (Jaako, Blood 2011; Jaako, Blood 2012). This model contains an Rps19-targeting shRNA (shRNA-D) that is expressed by a doxycycline-responsive promoter located downstream of Collagen A1 gene. Transgenic animals were bred either heterozygous or homozygous for the shRNA-D in order to generate two models with intermediate or severe Rps19 deficiency, respectively. Indeed, following transplantation, the administration of doxycycline to the recipients with homozygous shRNA-D bone marrow results in an acute and lethal bone marrow failure, while the heterozygous shRNA-D recipients develop a mild and chronic phenotype. We employed lentiviral vectors harboring a codon-optimized human RPS19 cDNA driven by the SFFV promoter, followed by IRES and GFP (SFFV-RPS19). A similar vector without the RPS19 cDNA was used as a control (SFFV-GFP). To assess the therapeutic potential of the SFFV-RPS19 vector in vivo, transduced c-Kit enriched bone marrow cells from control and homozygous shRNA-D mice were injected into lethally irradiated wild-type mice. Based on the percentage of GFP-positive cells, transduction efficiencies varied between 40 % and 60 %. Three months after transplantation, recipient mice were administered doxycycline in order to induce Rps19 deficiency. After two weeks of doxycycline administration, the recipients transplanted with SFFV-RPS19 or SFFV-GFP control cells showed no differences in blood cellularity. Remarkably, at the same time-point the recipients with SFFV-GFP homozygous shRNA-D bone marrow showed a dramatic decrease in blood cellularity that led to death, while the recipients with SFFV-RPS19 shRNA-D bone marrow showed nearly normal blood cellularity. These results demonstrate the potential of enforced expression of RPS19 to reverse the severe anemia and bone marrow failure in DBA. To assess the reconstitution advantage of transduced hematopoietic stem and progenitor cells with time, we performed similar experiments with heterozygous shRNA-D bone marrow cells. We monitored the percentage of GFP-positive myeloid cells in the peripheral blood, which provides a dynamic read-out for bone marrow activity. After four months of doxycycline administration, the mean percentage of GFP-positive cells in the recipients with SFFV-RPS19 heterozygous shRNA-D bone marrow increased to 97 %, while no similar advantage was observed in the recipients with SFFV-RPS19 or SFFV-GFP control bone marrow, or SFFV-GFP heterozygous shRNA-D bone marrow. Consistently, SFFV-RPS19 conferred a reconstitution advantage over the non-transduced cells in the bone marrow. Furthermore, SFFV-RPS19 reversed the hypocellular bone marrow observed in the SFFV-GFP heterozygous shRNA-D recipients. Taken together, using mouse models for RPS19-deficient DBA, we demonstrate that the enforced expression of RPS19 rescues the lethal bone marrow failure and confers a strong reconstitution advantage in vivo. These results provide a proof-of-principle for gene therapy in the treatment of RPS19-deficient DBA. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document