scholarly journals Tumor Cells and the Extracellular Matrix Dictate the Pro-Tumoral Profile of Macrophages in CRC

Cancers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 5199
Author(s):  
Sara Coletta ◽  
Silvia Lonardi ◽  
Francesca Sensi ◽  
Edoardo D’Angelo ◽  
Matteo Fassan ◽  
...  

Tumor-associated macrophages (TAMs) are major components of the tumor microenvironment. In colorectal cancer (CRC), a strong infiltration of TAMs is accompanied by a decrease in effector T cells and an increase in the metastatic potential of CRC. We investigated the functional profile of TAMs infiltrating CRC tissue by immunohistochemistry, flow cytometry, ELISA, and qRT-PCR and their involvement in impairing the activation of effector T cells. In CRC biopsies, we evidenced a high percentage of macrophages with low expression of the antigen-presenting complex MHC-II and high expression of CD206. Monocytes co-cultured with tumor cells or a decellularized tumor matrix differentiated toward a pro-tumoral macrophage phenotype characterized by decreased expression of MHC-II and CD86 and increased expression of CD206 and an abundant release of pro-tumoral cytokines and chemokines. We demonstrated that the hampered expression of MHC-II in macrophages is due to the downregulation of the MHC-II transactivator CIITA and that this effect relies on increased expression of miRNAs targeting CIITA. As a result, macrophages become unable to present antigens to CD4 T lymphocytes. Our data suggest that the tumor microenvironment contributes to defining a pro-tumoral profile of macrophages infiltrating CRC tissue with impaired capacity to activate T cell effector functions.

2020 ◽  
Author(s):  
Hen Prizant ◽  
Nilesh Patil ◽  
Seble Negatu ◽  
Alexander McGurk ◽  
Scott A. Leddon ◽  
...  

SUMMARYCorrect positioning of T cells within infected tissues is critical for T cell activation and pathogen control. Upon tissue entry, effector T cells must efficiently locate antigen presenting cells (APC) for peripheral activation. We reveal that tissue entry and initial peripheral activation of Th1 effector T cells are tightly linked to perivascular positioning of chemokine-expressing APCs. Dermal inflammation induced tissue-wide de novo generation of discrete perivascular CXCL10+ cell clusters, enriched for CD11c+MHC-II+ monocyte-derived dendritic cells. These chemokine clusters were ‘hot spots’ for both Th1 extravasation and activation in the inflamed skin. CXCR3-dependent Th1 localization to the cluster micro-environment prolonged T-APC interactions and boosted function. Both the frequency and range of these clusters were enhanced via a Th1-intrinsic, IFNγ-dependent positive feedback loop. Thus, the perivascular CXCL10+ clusters act as initial peripheral activation niches, optimizing controlled activation broadly throughout the tissue by coupling Th1 tissue entry with enhanced opportunities for Th1-APC encounter.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A799-A799
Author(s):  
Dhiraj Kumar ◽  
Sreeharsha Gurrapu ◽  
Hyunho Han ◽  
Yan Wang ◽  
Seongyeon Bae ◽  
...  

BackgroundLong non-coding RNAs (lncRNAs) are involved in various biological processes and diseases. Malat1 (metastasis-associated lung adenocarcinoma transcript 1), also known as Neat2, is one of the most abundant and highly conserved nuclear lncRNAs. Several studies have shown that the expression of lncRNA Malat1 is associated with metastasis and serving as a predictive marker for various tumor progression. Metastatic relapse often develops years after primary tumor removal as a result of disseminated tumor cells undergoing a period of latency in the target organ.1–4 However, the correlation of tumor intrinsic lncRNA in regulation of tumor dormancy and immune evasion is largely unknown.MethodsUsing an in vivo screening platform for the isolation of genetic entities involved in either dormancy or reactivation of breast cancer tumor cells, we have identified Malat1 as a positive mediator of metastatic reactivation. To functionally uncover the role of Malat1 in metastatic reactivation, we have developed a knock out (KO) model by using paired gRNA CRISPR-Cas9 deletion approach in metastatic breast and other cancer types, including lung, colon and melanoma. As proof of concept we also used inducible knockdown system under in vivo models. To delineate the immune micro-environment, we have used 10X genomics single cell RNA-seq, ChIRP-seq, multi-color flowcytometry, RNA-FISH and immunofluorescence.ResultsOur results reveal that the deletion of Malat1 abrogates the tumorigenic and metastatic potential of these tumors and supports long-term survival without affecting their ploidy, proliferation, and nuclear speckles formation. In contrast, overexpression of Malat1 leads to metastatic reactivation of dormant breast cancer cells. Moreover, the loss of Malat1 in metastatic cells induces dormancy features and inhibits cancer stemness. Our RNA-seq and ChIRP-seq data indicate that Malat1 KO downregulates several immune evasion and stemness associated genes. Strikingly, Malat1 KO cells exhibit metastatic outgrowth when injected in T cells defective mice. Our single-cell RNA-seq cluster analysis and multi-color flow cytometry data show a greater proportion of T cells and reduce Neutrophils infiltration in KO mice which indicate that the immune microenvironment playing an important role in Malat1-dependent immune evasion. Mechanistically, loss of Malat1 is associated with reduced expression of Serpinb6b, which protects the tumor cells from cytotoxic killing by the T cells. Indeed, overexpression of Serpinb6b rescued the metastatic potential of Malat1 KO cells by protecting against cytotoxic T cells.ConclusionsCollectively, our data indicate that targeting this novel cancer-cell-initiated domino effect within the immune system represents a new strategy to inhibit tumor metastatic reactivation.Trial RegistrationN/AEthics ApprovalFor all the animal studies in the present study, the study protocols were approved by the Institutional Animal Care and Use Committee(IACUC) of UT MD Anderson Cancer Center.ConsentN/AReferencesArun G, Diermeier S, Akerman M, et al., Differentiation of mammary tumors and reduction in metastasis upon Malat1 lncRNA loss. Genes Dev 2016 Jan 1;30(1):34–51.Filippo G. Giancotti, mechanisms governing metastatic dormancy and reactivation. Cell 2013 Nov 7;155(4):750–764.Gao H, Chakraborty G, Lee-Lim AP, et al., The BMP inhibitor Coco reactivates breast cancer cells at lung metastatic sites. Cell 2012b;150:764–779.Gao H, Chakraborty G, Lee-Lim AP, et al., Forward genetic screens in mice uncover mediators and suppressors of metastatic reactivation. Proc Natl Acad Sci U S A 2014 Nov 18; 111(46): 16532–16537.


2019 ◽  
Vol 343 ◽  
pp. 103730 ◽  
Author(s):  
Chiara Massa ◽  
Barbara Seliger

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A553-A553
Author(s):  
McLane Watson ◽  
Paolo Vignali ◽  
Steven Mullet ◽  
Abigail Overacre-Delgoffe ◽  
Ronal Peralta ◽  
...  

BackgroundRegulatory T (Treg) cells are vital for preventing autoimmunity but are a major barrier to robust cancer immunity as the tumor microenvironment (TME) recruits and promotes their function. The deregulated cellular metabolism of tumor cells leads to a metabolite-depleted, hypoxic, and acidic TME. While the TME impairs the effector function of highly glycolytic tumor infiltrating CD8 T cells, Treg cell suppressive function is maintained. Further, studies of in vitro induced and ex vivo Treg cells reveal a distinct metabolic profile compared to effector T cells. Thus, it may be that the altered metabolic landscape of the TME and the increased activity of intratumoral Treg cells are linked.MethodsFlow cytometry, isotopic flux analysis, Foxp3 driven Cre-lox, glucose tracers, Seahorse extracellular flux analysis, RNA sequencing.ResultsHere we show Treg cells display heterogeneity in terms of their glucose metabolism and can engage an alternative metabolic pathway to maintain their high suppressive function and proliferation within the TME and other tissues. Tissue derived Treg cells (both at the steady state and under inflammatory conditions) show broad heterogeneity in their ability to take up glucose. However, glucose uptake correlates with poorer suppressive function and long-term functional stability, and culture of Treg cells in high glucose conditions decreased suppressive function. Treg cells under low glucose conditions upregulate genes associated with the uptake and metabolism of the glycolytic end-product lactic acid. Treg cells withstand high lactate conditions, and lactate treatment prevents the destabilizing effects of high glucose culture. Treg cells utilize lactate within the TCA cycle and generate phosphoenolpyruvate (PEP), a critical intermediate that can fuel intratumoral Treg cell proliferation in vivo. Using mice with a Treg cell-restricted deletion of lactate transporter Slc16a1 (MCT1) we show MCT1 is dispensable for peripheral Treg cell function but required intratumorally, resulting in slowed tumor growth and prolonged survival.ConclusionsThese data support a model in which Treg cells are metabolically flexible such that they can utilize ‘alternative’ metabolites present in the TME to maintain their suppressive identity. Further, our studies support the notion that tumors avoid immune destruction not only by depriving effector T cells of essential nutrients, but also by metabolically supporting regulatory T cells.


2017 ◽  
Vol 214 (11) ◽  
pp. 3417-3433 ◽  
Author(s):  
Xiaojing Chen ◽  
Lucia Poncette ◽  
Thomas Blankenstein

For thymic selection and responses to pathogens, T cells interact through their αβ T cell receptor (TCR) with peptide–major histocompatibility complex (MHC) molecules on antigen-presenting cells. How the diverse TCRs interact with a multitude of MHC molecules is unresolved. It is also unclear how humans generate larger TCR repertoires than mice do. We compared the TCR repertoire of CD4 T cells selected from a single mouse or human MHC class II (MHC II) in mice containing the human TCR gene loci. Human MHC II yielded greater thymic output and a more diverse TCR repertoire. The complementarity determining region 3 (CDR3) length adjusted for different inherent V-segment affinities to MHC II. Humans evolved with greater nontemplate-encoded CDR3 diversity than did mice. Our data, which demonstrate human TCR–MHC coevolution after divergence from rodents, explain the greater T cell diversity in humans and suggest a mechanism for ensuring that any V–J gene combination can be selected by a single MHC II.


2021 ◽  
Vol 9 (Suppl 1) ◽  
pp. A30.1-A30
Author(s):  
N Benhamouda ◽  
I Sam ◽  
N Epaillard ◽  
A Gey ◽  
A Saldmann ◽  
...  

BackgroundCD70, a costimulatory molecule on antigen presenting cells, is known to activate CD27-expressing T cells. CD27-CD70 interaction leads to the release of soluble CD27 (sCD27). However, persistent interaction of CD27 and CD70 such as in chronic infection may exhaust the T cell pool and promote apoptosis. Surprisingly, our analysis based on TCGA database show that clear cell renal cell carcinoma (ccRCC) expresses the highest levels of CD70 among all solid tumors. Despite the important clinical efficacy of immunotherapy by anti-PD-1 in RCC patients, the overall response to anti-PD1 remains modest. The relationship between the CD27-CD70 interaction in the RCC and the response to immunotherapy is still unclear.Materials and MethodsTo study the CD27 and CD70 expression in the tumor microenvironment (TME), FFPE tumor tissues from 25 RCC patients were analysed using multiplex in situ immunofluorescence. 10 fresh RCC tumor samples were collected to analyse the phenotype of CD27+ T cells by flow cytometry and 4 samples were proceeded for single-cell RNA-seq analysis. A cohort of metastatic RCC patients (n = 35) treated by anti-PD-1 were enrolled for the measurement of plasma sCD27 by ELISA and the survival analysis is also realized.ResultsIn the TME, we demonstrated that CD27+ T cells interact with CD70-expressing tumor cells. In fresh tumors from RCC patients, CD27+ T cells express higher levels of cleaved caspase 3 (a classical marker of apoptosis) than CD27- T cells. We confirmed the apoptotic signature (BAX, FASLG, BCL2L11, CYCS, FBXO32, LGALS1, PIK3R1, TERF1, TXNIP, CDKN2A) of CD27+ T cells by single-cell RNAseq analysis. CD27+T cells also had a tissue resident memory T cell phenotype with enriched gene expression of ITGAE, PRDM1, RBPJ and ZNF683. Moreover, CD27+T cells display an exhaustion phenotype with the expression of multiple inhibitory receptors gene signature (PDCD1, CTLA4, HAVCR2, LAG3, etc). Besides, intratumoral CD27-CD70 interaction significantly correlates with plasma sCD27 concentration in RCC (p = 0.0017). In metastatic RCC patients treated with anti-PD-1, higher levels of sCD27 predict poor overall survival (p = 0.037), while it did not correlate with inflammatory markers or clinical prognostic criteria.ConclusionsIn conclusion, we demonstrated that sCD27, a surrogate of T cell dysfunction in tumors likely induced by persistent interactions of CD27+T cells and CD70-expressing tumor cells, is a predictive biomarker of resistance to immunotherapy in mRCC. To our knowledge, this is the first report showing that a peripheral blood biomarker may reflect certain aspects of the tumor-host interaction in the tumor microenvironment. Given the frequent expression of CD70 and CD27 in solid tumors, our findings may be further extended to other types of tumors. CD70-CD27 interaction could thus be considered as a mechanism of tumor escape, but also a novel therapeutic target in cancers.Disclosure InformationN. Benhamouda: None. I. Sam: None. N. Epaillard: None. A. Gey: None. A. Saldmann: None. J. Pineau: None. M. Hasan: None. V. Verkarre: None. V. Libri: None. S. Mella: None. C. Granier: None. C. Broudin: None. P. Ravel: None. B. Jabla: None. N. Chaput: None. L. Albiges: None. Y. Vano: None. O. Adotevi: None. S. Oudard: B. Research Grant (principal investigator, collaborator or consultant and pending grants as well as grants already received); Modest; SIRIC CARPEM, FONCER. E. Tartour: B. Research Grant (principal investigator, collaborator or consultant and pending grants as well as grants already received); Modest; Fondation ARC, INCA PLBio, Labex Immuno-Oncology, SIRIC CARPEM, FONCER, IDEX université de Paris, Inserm Transfert.


Cancers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 696 ◽  
Author(s):  
Bianca Simon ◽  
Dennis C. Harrer ◽  
Beatrice Schuler-Thurner ◽  
Gerold Schuler ◽  
Ugur Uslu

Tumor cells can develop immune escape mechanisms to bypass T cell recognition, e.g., antigen loss or downregulation of the antigen presenting machinery, which represents a major challenge in adoptive T cell therapy. To counteract these mechanisms, we transferred not only one, but two receptors into the same T cell to generate T cells expressing two additional receptors (TETARs). We generated these TETARs by lentiviral transduction of a gp100-specific T cell receptor (TCR) and subsequent electroporation of mRNA encoding a second-generation CSPG4-specific chimeric antigen receptor (CAR). Following pilot experiments to optimize the combined DNA- and RNA-based receptor transfer, the functionality of TETARs was compared to T cells either transfected with the TCR only or the CAR only. After transfection, TETARs clearly expressed both introduced receptors on their cell surface. When stimulated with tumor cells expressing either one of the antigens or both, TETARs were able to secrete cytokines and showed cytotoxicity. The confirmation that two antigen-specific receptors can be functionally combined using two different methods to introduce each receptor into the same T cell opens new possibilities and opportunities in cancer immunotherapy. For further evaluation, the use of these TETARs in appropriate animal models will be the next step towards a potential clinical use in cancer patients.


Blood ◽  
2009 ◽  
Vol 114 (6) ◽  
pp. 1141-1149 ◽  
Author(s):  
Ilona Kryczek ◽  
Mousumi Banerjee ◽  
Pui Cheng ◽  
Linhua Vatan ◽  
Wojciech Szeliga ◽  
...  

Abstract Th17 cells play an active role in autoimmune diseases. However, the nature of Th17 cells is poorly understood in cancer patients. We studied Th17 cells, the associated mechanisms, and clinical significance in 201 ovarian cancer patients. Tumor-infiltrating Th17 cells exhibit a polyfunctional effector T-cell phenotype, are positively associated with effector cells, and are negatively associated with tumor-infiltrating regulatory T cells. Tumor-associated macrophages promote Th17 cells through interleukin-1β (IL-1β), whereas tumor-infiltrating regulatory T cells inhibit Th17 cells through an adenosinergic pathway. Furthermore, through synergistic action between IL-17 and interferon-γ, Th17 cells stimulate CXCL9 and CXCL10 production to recruit effector T cells to the tumor microenvironment. The levels of CXCL9 and CXCL10 are associated with tumor-infiltrating effector T cells. The levels of tumor-infiltrating Th17 cells and the levels of ascites IL-17 are reduced in more advanced diseases and positively predict patient outcome. Altogether, Th17 cells may contribute to protective human tumor immunity through inducing Th1-type chemokines and recruiting effector cells to the tumor microenvironment. Inhibition of Th17 cells represents a novel immune evasion mechanism. This study thus provides scientific and clinical rationale for developing novel immune-boosting strategies based on promoting the Th17 cell population in cancer patients.


2003 ◽  
Vol 197 (3) ◽  
pp. 375-385 ◽  
Author(s):  
Hiroeki Sahara ◽  
Nilabh Shastri

CD4 T cells regulate immune responses that cause chronic graft rejection and graft versus host disease but their target antigens remain virtually unknown. We developed a new method to identify CD4 T cell–stimulating antigens. LacZ-inducible CD4 T cells were used as a probe to detect their cognate peptide/MHC II ligand generated in dendritic cells fed with Escherichia coli expressing a library of target cell genes. The murine H46 locus on chromosome 7 was thus found to encode the interleukin 4–induced IL4i1 gene. The IL4i1 precursor contains the HAFVEAIPELQGHV peptide which is presented by Ab major histocompatibility complex class II molecule via an endogenous pathway in professional antigen presenting cells. Both allelic peptides bind Ab and a single alanine to methionine substitution at p2 defines nonself. These results reveal novel features of H loci that regulate CD4 T cell responses as well as provide a general strategy for identifying elusive antigens that elicit CD4 T cell responses to tumors or self-tissues in autoimmunity.


Sign in / Sign up

Export Citation Format

Share Document