scholarly journals Genome-Wide Profiling Reveals HPV Integration Pattern and Activated Carcinogenic Pathways in Penile Squamous Cell Carcinoma

Cancers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 6104
Author(s):  
Kang-Bo Huang ◽  
Sheng-Jie Guo ◽  
Yong-Hong Li ◽  
Xin-Ke Zhang ◽  
Dong Chen ◽  
...  

Human papillomavirus (HPV) is a significant etiologic driver of penile squamous cell carcinoma (PSCC). The integration pattern of HPV and its carcinogenic mechanism in PSCC remain largely unclear. We retrospectively reviewed 108 PSCC cases who received surgery between 2008 and 2017. Using high-throughput viral integration detection, we identified 35 HPV-integrated PSCCs. Unlike cervical cancer, the HPV E2 oncogene was not prone to involvement in integration. Eleven of the 35 (31.4%) HPV-integrated PSCCs harbored intact HPV E2; these tumors had lower HPV E6 and E7 expression and higher expression of p53 and pRb proteins than those with disrupted E2 did (p < 0.001 and p = 0.024). Integration breakpoints are preferentially distributed in or near host genes, including previously reported hotspots (KLF5, etc.) and newly identified hotspots (CADM2, etc.), which are mainly involved in oncogenic signaling pathways (MAPK, JAK/STAT, etc.). Regarding the phosphorylation levels of JNK, p38 was higher in HPV-positive tumors with MAPK-associated integration than those in HPV-positive tumors with other integration and those in HPV-negative tumors. In vitro, KLF5 knockdown inhibited proliferation and invasion of PSCC cells, while silencing CADM2 promoted migration and invasion. In conclusion, this study enhances our understanding of HPV-induced carcinogenesis in PSCC, which may not only rely on the E6/E7 oncogenes, but mat also affect the expression of critical genes and thus activate oncogenic pathways.

2019 ◽  
Vol 19 (2) ◽  
pp. 248-255 ◽  
Author(s):  
Ling Gao ◽  
Jianwei Dong ◽  
Nanyang Zhang ◽  
Zhanxian Le ◽  
Wenhao Ren ◽  
...  

Background:The Oral Squamous Cell Carcinoma (OSCC) is one of the most frequent cancer types. Failure of treatment of OSCC is potentially lethal because of local recurrence, regional lymph node metastasis, and distant metastasis. Chemotherapy plays a vital role through suppression of tumorigenesis. Cyclosporine A (CsA), an immunosuppressant drug, has been efficiently used in allograft organ transplant recipients to prevent rejection, and also has been used in a subset of patients with autoimmunity related disorders. The present study aims to investigate novel and effective chemotherapeutic drugs to overcome drug-resistance in the treatment of OSCC.Methods:Cells were incubated in the standard way. Cell viability was assayed using the MTT assay. Cell proliferation was determined using colony formation assay. The cell cycle assay was performed using flow cytometry. Apoptosis was assessed using fluorescence-activated cell sorting after stained by the Annexin V-fluorescein isothiocyanate (FITC). Cell migration and invasion were analyzed using wound healing assay and tranwell. The effect of COX-2, c-Myc, MMP-9, MMP-2, and NFATc1 protein expression was determined using Western blot analysis while NFATc1 mRNA expression was determined by RT-PCR.Results:In vitro studies indicated that CsA inhibited partial OSCC growth by inducing cell cycle arrest, apoptosis, and the migration and invasion of OSCC cells. We also demonstrated that CsA could inhibit the expression of NFATc1 and its downstream genes COX-2, c-Myc, MMP-9, and MMP-2 in OSCC cells. Furthermore, we analyzed the expression of NFATc1 in head and neck cancer through the Oncomine database. The data was consistent with the experimental findings.Conclusion:The present study initially demonstrated that CsA could inhibit the progression of OSCC cells and can mediate the signal molecules of NFATc1 signaling pathway, which has strong relationship with cancer development. That explains us CsA has potential to explore the possibilities as a novel chemotherapeutic drug for the treatment of OSCC.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Wen Chen ◽  
Chenzhou Wu ◽  
Yafei Chen ◽  
Yuhao Guo ◽  
Ling Qiu ◽  
...  

AbstractC18 ceramide plays an important role in the occurrence and development of oral squamous cell carcinoma. However, the function of ceramide synthase 1, a key enzyme in C18 ceramide synthesis, in oral squamous cell carcinoma is still unclear. The aim of our study was to investigate the relationship between ceramide synthase 1 and oral cancer. In this study, we found that the expression of ceramide synthase 1 was downregulated in oral cancer tissues and cell lines. In a mouse oral squamous cell carcinoma model induced by 4-nitroquinolin-1-oxide, ceramide synthase 1 knockout was associated with the severity of oral malignant transformation. Immunohistochemical studies showed significant upregulation of PCNA, MMP2, MMP9, and BCL2 expression and downregulation of BAX expression in the pathological hyperplastic area. In addition, ceramide synthase 1 knockdown promoted cell proliferation, migration, and invasion in vitro. Overexpression of CERS1 obtained the opposite effect. Ceramide synthase 1 knockdown caused endoplasmic reticulum stress and induced the VEGFA upregulation. Activating transcription factor 4 is responsible for ceramide synthase 1 knockdown caused VEGFA transcriptional upregulation. In addition, mild endoplasmic reticulum stress caused by ceramide synthase 1 knockdown could induce cisplatin resistance. Taken together, our study suggests that ceramide synthase 1 is downregulated in oral cancer and promotes the aggressiveness of oral squamous cell carcinoma and chemotherapeutic drug resistance.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Jiwei Cheng ◽  
Haibo Ma ◽  
Ming Yan ◽  
Wenqun Xing

AbstractEsophageal squamous cell carcinoma (ESCC) is one of the most common malignant tumors in the digestive system with a high incidence and poor prognosis. Long non-coding RNAs (LncRNA) have been reported to be closely associated with the occurrence and development of various human cancers. Data from GSE89102 shows an increase of THAP9-AS1 expression in ESCC. However, its functions and mechanisms underlying ESCC progression remain to be investigated. In this study, we found that THAP9-AS1 was overexpressed in ESCC tissues and cells. High THAP9-AS1 expression was positively correlated with tumor size, TNM stage, lymph node metastasis, and worse prognosis. Functionally, depletion of THAP9-AS1 suppressed cell proliferation, migration, and invasion, while enhanced apoptosis in vitro. Consistently, knockdown of THAP9-AS1 inhibited xenograft tumor growth in vivo. Mechanistically, THAP9-AS1 could serve as a competing endogenous RNA (ceRNA) for miR-133b, resulting in the upregulation of SOX4. Reciprocally, SOX4 bound to the promoter region of THAP9-AS1 to activate its transcription. Moreover, the anti-tumor property induced by THAP9-AS1 knockdown was significantly impaired due to miR-133b downregulation or SOX4 overexpression. Taken together, our study reveals a positive feedback loop of THAP9-AS1/miR-133b/SOX4 to facilitate ESCC progression, providing a potential molecular target to fight against ESCC.


2017 ◽  
Vol 32 (4) ◽  
pp. 403-408 ◽  
Author(s):  
Hongfen Liu ◽  
Qiang Zhen ◽  
Yakun Fan

Background Recent studies have shown that long noncoding RNA (IncRNA) gastric carcinoma highly expressed transcript 1 (GHET1) was involved in the progression of tumors. However, the role of GHET1 in esophageal squamous cell carcinoma (ESCC) remains unclear. Methods The expression of IncRNA GHET1 was examined in 55 paired ESCC tissues and adjacent nontumor tissues. Molecular and cellular techniques were used to explore the role of GHET1 on ESCC cells. Results Our data showed that GHET1 expression was significantly increased in ESCC tissues and cell lines. High GHET1 expression in ESCC tissues was significantly associated with poor differentiation, advanced tumor nodes metastasis stage, and lymph node metastasis. GHET1 showed high sensitivity and specificity for diagnosing ESCC. Our data from in vitro assays showed that GHET1 inhibition suppressed ESCC cells proliferation, migration, and invasion, and induced cells apoptosis. Furthermore, western blot showed that GHET1 inhibition significantly decreased the expression of vimentin and N-cadherin while it increased the expression of E-cadherin. Conclusions Our study indicates that GHET1 acts as an oncogene in ESCC and may represent a novel therapeutic target for the treatment of ESCC patients.


2021 ◽  
Vol 11 ◽  
Author(s):  
Xiaodan Wu ◽  
Yihui Fan ◽  
Yupeng Liu ◽  
Biao Shen ◽  
Haimin Lu ◽  
...  

Long non-coding RNAs (lncRNAs) have been shown to play important roles in human cancers, including esophageal squamous cell carcinoma (ESCC). In the current study, we identified CCAT2 as a relevant lncRNA and investigated its role in the progression of ESCC. RT-qPCR was adopted to detect CCAT2 expression in collected clinical samples, ESCC cell lines, and a normal cell line. We tested the correlation between CCAT2 expression and the prognosis of ESCC. RT-qPCR or immunoblotting was adopted to detect the expression of relevant factors in ESCC tissues or cells. Cell proliferation, apoptosis, migration, and invasion were examined by colony formation assay, flow cytometry, scratch assay, and Transwell assay, respectively, while subcutaneous tumorigenesis in nude mice was adopted to examine the role of CCAT2 in tumorigenesis of ESCC cells in vivo. Bioinformatics analysis, dual luciferase reporter assay, and RIP were conducted for the target relationship profiling. Me-RIP was adopted to detect m6A modification level of TK1 in ESCC tissues or cells. Upregulated CCAT2, IGF2BP2, and TK1 expression and inhibited miR-200b expression were observed in ESCC cells and tissues. CCAT2 bound to miR-200b and reduced its expression, leading to upregulated IGF2BP2 expression. IGF2BP2 improved TK1 mRNA stability to enhance its expression by recognizing its m6A modification. CCAT2 promoted the migration and invasion of ESCC cells in vitro, and tumorigenesis in vivo by upregulating TK1 expression, while overexpression of miR-200b reversed these effects of CCAT2. Overall, this study suggests that CCAT2 competitively binds to miR-200b to alleviate its inhibitory effects on IGF2BP2 expression, resulting in elevated TK1 expression, and an ensuing promotion of the development of ESCC.


2018 ◽  
Vol 49 (6) ◽  
pp. 2511-2520 ◽  
Author(s):  
Zhonghua Zhang ◽  
Xuehai Wang ◽  
Shengda Cao ◽  
Xiao Han ◽  
Zhanwang Wang ◽  
...  

Background/Aims: Researchers have shown that long noncoding RNAs are closely associated with the pathogenesis of laryngeal squamous cell carcinoma (LSCC). However, the role of the long noncoding RNA taurine-upregulated gene 1 (TUG1) in the pathogenesis of LSCC remains unclear, although it is recognized as an oncogenic regulator for several types of squamous cell carcinoma. Methods: qRT-PCR was performed to measure the expression of TUG1 in LSCC tissues and cell lines. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) was used to measure the effect of TUG1 on cell proliferation. Transwell assay and flow cytometry were employed to determine the effect of TUG1 on cell migration and invasion. Western-blot were performed to explore the relation of TUG1 and p53 mRNA. Results: Higher TUG1 expression in LSCC than in paired normal tumor-adjacent tissue specimens (N = 64) was observed using quantitative real-time polymerase chain reaction. Also, high TUG1 expression was positively associated with advanced T category, worse lymph node metastasis and late clinical stage. Furthermore, in vitro experiments demonstrated that silencing of TUG1 markedly inhibited proliferation, cell-cycle progression, migration, and invasion of LSCC cells, whereas depletion of TUG1 led to increased apoptosis. Conclusion: These findings demonstrated that upregulated TUG1 expression exerted oncogenic effects by promoting proliferation, migration, and invasion, and inhibiting apoptosis in LSCC cells.


Author(s):  
Qibing Chen ◽  
Yan Wang ◽  
Fen Li ◽  
Xiang Cheng ◽  
Yu Xiao ◽  
...  

Background: Macrophage migration inhibitory factor (MIF), originally reported as an inflammation regulating molecule, is elevated in various cancer cells, which may promote carcinogenesis. Meanwhile, ISO-1 is a potent small molecular inhibitor of MIF, which has not been investigated in nasopharyngeal carcinoma (NPC); hence the impact of ISO-1 on NPC cells remains to be illustrated. Objective: This study intended to explore the biological function of ISO-1 in NPC cells in vitro and prove a possibility of ISO-1 being a novel agent in NPC treatments. Methods: Gene expression of MIF in Head and Neck squamous cell carcinoma were obtained from The Cancer Genome Atlas (TCGA) database. Nasal pharyngeal tissues were collected from adult patients undergoing nasopharyngeal biopsy for MIF level detection. Proliferation of NPC cell lines 5-8B and 6-10B was studied using Cell Counting Kit-8 (CCK-8) assay and plate-colony-formation assay, apoptosis was determined by flow cytometry and TUNEL staining, migration and invasion capacities were measured by wound-healing assay and transwell assay, all to explore the function of ISO-1 in NPC cells in vitro. Epithelial-to-mesenchymal transition (EMT) level of NPC cells was determined by Western blot analysis and immunofluorescence assay. Results: Transcript level of MIF was significantly higher in head and neck squamous cell carcinoma. Protein MIF was overexpressed in human NPC tissues compared to non-cancerous ones, and its expression could be compromised by ISO-1 in vitro. 100μM ISO-1 significantly hindered NPC cells migration and invasion capacities in vitro but acted relatively poorly on proliferation and apoptosis. Immunofluorescence assay and Western blotting implied a down-regulated EMT level through TGF-β/Smad4 axis in ISO-1 treated NPC cells compared to the vehicle. Conclusion: This study indicated that MIF antagonist ISO-1 holds impact on NPC progression by influencing the migration and invasion of NPC cells ISO-1 inhibits the EMT process of NPC cells through TGF-β/Smad4 axis, supporting that prudent application of ISO-1 may be a potential adjuvant treatment for NPC.


Author(s):  
Zhirong Li ◽  
Xuebo Qin ◽  
Wei Bian ◽  
Yishuai Li ◽  
Baoen Shan ◽  
...  

Abstract Background In recent years, long non-coding RNAs (lncRNAs) are of great importance in development of different types of tumors, while the function of lncRNA ZFAS1 is rarely discussed in esophageal squamous cell carcinoma (ESCC). Therefore, we performed this study to explore the expression of exosomal lncRNA ZFAS1 and its molecular mechanism on ESCC progression. Methods Expression of ZFAS1 and miR-124 in ESCC tissues was detected. LncRNA ZFAS1 was silenced to detect its function in the biological functions of ESCC cells. A stable donor and recipient culture model was established. Eca109 cells transfected with overexpressed and low expressed ZFAS1 plasmid and miR-124 inhibitor labeled by Cy3 were the donor cells, and then co-cultured with recipient cells to observe the transmission of Cy3-ZFAS1 between donor cells and recipient cells. The changes of cell proliferation, apoptosis, invasion, and migration in recipient cells were detected. The in vivo experiment was conducted for verifying the in vitro results. Results LncRNA ZFAS1 was upregulated and miR-124 was down-regulated in ESCC tissues. Silencing of ZFAS1 contributed to suppressed proliferation, migration, invasion and tumor growth in vitro and induced apoptosis of ESCC cells. LncRNA ZFAS1 was considered to be a competing endogenous RNA to regulate miR-124, thereby elevating STAT3 expression. Exosomes shuttled ZFAS1 stimulated proliferation, migration and invasion of ESCC cells and restricted their apoptosis with increased STAT3 and declined miR-124. Furthermore, in vivo experiment suggested that elevated ZFAS1-exo promoted tumor growth in nude mice. Conclusion This study highlights that exosomal ZFAS1 promotes the proliferation, migration and invasion of ESCC cells and inhibits their apoptosis by upregulating STAT3 and downregulating miR-124, thereby resulting in the development of tumorigenesis of ESCC.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Ying Zheng ◽  
Bowen Zheng ◽  
Xue Meng ◽  
Yuwen Yan ◽  
Jia He ◽  
...  

Abstract Background Tongue squamous cell carcinoma (TSCC) is a most invasive cancer with high mortality and poor prognosis. It is reported that lncRNA DANCR has implications in multiple types of cancers. However, its biological role and underlying mechanism in TSCC progress are not well elucidated. Methods Our present study first investigated the function of DANCR on the proliferation, migration and invasion of TSCC cells by silencing or overexpressing DANCR. Further, the miR-135a-5p-Kruppel-like Factor 8 (KLF8) axis was focused on to explore the regulatory mechanism of DANCR on TSCC cell malignant phenotypes. Xenografted tumor growth using nude mice was performed to examine the role of DANCR in vivo. Results DANCR knockdown reduced the viability and inhibited the migration and invasion of TSCC cells in vitro, while ectopic expression of DANCR induced opposite effects. In vivo, the tumor growth and the expression of matrix metalloproteinase (MMP)-2/9 and KLF8 were also blocked by DANCR inhibition. In addition, we found that miR-135-5p directly targeted DANCR, which was negatively correlated with DANCR on TSCC progression. Its inhibition reversed the beneficial effects of DANCR silence on TSCC malignancies. Furthermore, the expression of KLF8 evidently altered by both DANCR and miR-135a-5p. Silencing KLF8 using its specific siRNA showed that KLF8 was responsible for the induction of miR-135a-5p inhibitor on TSCC cell malignancies and MMP-2/9 expression. Conclusions These findings, for the first time, suggest that DANCR plays an oncogenic role in TSCC progression via targeting miR-135a-5p/KLF8 axis, which provides a promising biomarker and treatment approach for preventing TSCC.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yanhui Zhang ◽  
Aifang Wang ◽  
Xiaohe Zhang ◽  
Xiaoliang Wang ◽  
Jin Zhang ◽  
...  

Objective. Oral squamous cell carcinoma (OSCC) is the most common malignant tumor of the head and neck, with strong local invasiveness and cervical lymph node metastasis. The purpose of this study was to investigate the role of LINC01296 in oral squamous cell carcinoma and its possible mechanism. Materials and Methods. GEPAI database analysis and clinical samples were used to detect the expression of LINC01296 in head and neck cancer. In vivo experiment, MTT, clone formation assay, and transwell were used to detect the proliferation, migration, and invasion of oral squamous cell carcinoma. The effect of LINC01296 on EMT was detected by western blot and qRT-PCR to measure the expression of epithelial and mesenchymal phenotypic markers. BALB/c nude mice were used to carry out in vitro treatment experiment. In terms of mechanism, the binding relationship between LINC01296 and SRSF1 was predicted and verified by the RBPDB database and RNA pull-down assay. Results. LINC01296 was highly expressed in clinical samples and cell lines of oral squamous cell carcinoma. Overexpression of LINC01296 promoted the proliferation, invasion, and migration of oral squamous cell carcinoma cells and accelerated the formation of xenografts, while silencing LINC01296 inhibited tumor progression. In mechanism, LINC01296 plays a tumor-promoting role by binding to SRSF1 protein. Conclusion. LINC01296 promotes malignant lesions in oral squamous cell carcinoma by binding to SRSF1 protein, which provides important experimental data and theoretical basis for the prevention, diagnosis, and treatment of oral squamous cell carcinoma.


Sign in / Sign up

Export Citation Format

Share Document