scholarly journals Situational Awareness: Regulation of the Myb Transcription Factor in Differentiation, the Cell Cycle and Oncogenesis

Cancers ◽  
2014 ◽  
Vol 6 (4) ◽  
pp. 2049-2071 ◽  
Author(s):  
Olivia George ◽  
Scott Ness
2002 ◽  
Vol 22 (11) ◽  
pp. 3663-3673 ◽  
Author(s):  
Xiaolin Li ◽  
Donald P. McDonnell

ABSTRACT The B-Myb transcription factor has been implicated in coordinating the expression of genes involved in cell cycle regulation. Although it is expressed in a ubiquitous manner, its transcriptional activity is repressed until the G1-S phase of the cell cycle by an unknown mechanism. In this study we used biochemical and cell-based assays to demonstrate that the nuclear receptor corepressors N-CoR and SMRT interact with B-Myb. The significance of these B-Myb-corepressor interactions was confirmed by the finding that B-Myb mutants, which were unable to bind N-CoR, exhibited constitutive transcriptional activity. It has been shown previously that phosphorylation of B-Myb by cdk2/cyclin A enhances its transcriptional activity. We have now determined that phosphorylation by cdk2/cyclin A blocks the interaction between B-Myb and N-CoR and that mutation of the corepressor binding site within B-Myb bypasses the requirement for this phosphorylation event. Cumulatively, these findings suggest that the nuclear corepressors N-CoR and SMRT serve a previously unappreciated role as regulators of B-Myb transcriptional activity.


Blood ◽  
2005 ◽  
Vol 105 (10) ◽  
pp. 3855-3861 ◽  
Author(s):  
Wanli Lei ◽  
Fan Liu ◽  
Scott A. Ness

AbstractThe c-Myb transcription factor controls differentiation and proliferation in hematopoietic and other cell types and has latent transforming activity, but little is known about its regulation during the cell cycle. Here, c-Myb was identified as part of a protein complex from human T cells containing the cyclin-dependent kinase (CDK) CDK6. Assays using model reporter constructs as well as endogenous target genes showed that the activity of c-Myb was inhibited by cyclin D1 plus CDK4 or CDK6 but stimulated by expression of the CDK inhibitors p16 Ink4a, p21 Cip1, or p27 Kip1. Mapping experiments identified a highly conserved region in c-Myb which, when transferred to the related A-Myb transcription factor, also rendered it responsive to CDKs and p27. The results suggest that c-Myb activity is directly regulated by cyclin D1 and CDKs and imply that c-Myb activity is regulated during the cell cycle in hematopoietic cells.


2020 ◽  
Author(s):  
Atsumi Ando ◽  
Ryan C. Kirkbride ◽  
Don Jones ◽  
Jane Grimwood ◽  
Z. Jeffrey Chen

Abstract BackgroundCotton fibers provide a powerful model for studying cell differentiation and elongation. Each cotton fiber is a singular and elongated cell derived from epidermal-layer cells of a cotton seed. Efforts to understand this dramatic developmental shift have been impeded by the difficulty of isolating fiber cells from epidermal cells.ResultsHere we employed laser-capture microdissection (LCM) to separate these cell types. RNA-seq analysis revealed transitional differences between the fiber and epidermal-layer cells at 0 or 2 days post anthesis. Specifically, down-regulation of putative cell cycle genes was coupled with upregulation of ribosome biosynthesis and translation-related genes, which may suggest their respective roles in fiber cell initiation and elongation. Indeed, the amount of fibers in cultured ovules was increased by cell cycle progression inhibitor, Roscovitine, and decreased by ribosome biosynthesis inhibitor, Rbin-1. Moreover, many phytohormone-related genes were upregulated in the ovules and down-regulated in the fibers, suggesting their spatial-temporal effects on fiber cell development. Key cell cycle regulators were predicted to be epialleles, and MYB-transcription factor related genes displayed expression divergence between fibers and ovules, implying their effects on fiber traits.ConclusionsWe revealed that fiber cell initiation is accompanied by cell cycle arrest coupled with active ribosome biosynthesis, spatial-temporal regulation of phytohormones and expression divergence between MYB transcription factor genes. These valuable genomic resources and molecular insights will help develop breeding and biotechnological tools to improve cotton fiber production.


2017 ◽  
Author(s):  
Farah Patell ◽  
David Newman ◽  
Eunkyoung Lee ◽  
Zidian Xie ◽  
Carl Collins ◽  
...  

Abstract (180 words)Stomatal guard cells are formed through a sequence of asymmetric and symmetric divisions in the epidermis of the sporophyte of most land plants. We show that several D-type cyclins are consecutively activated in the stomatal linage in the epidermis of Arabidopsis thaliana. Whereas CYCD2;1 and CYCD3;2 are activated in the meristemoids early in the lineage, CYCD7;1 is activated before the final division. CYCD7;1 expression peaks in the guard mother cell, where its transcription is modulated by the FOUR-LIPS/MYB88 transcription factor. FOUR-LIPS/MYB88 interacts with the CYCD7;1 promoter and represses CYCD7;1 transcription. CYCD7;1 stimulates the final symmetric division in the stomatal lineage, since guard cell formation is delayed in the cycd7;1 mutant epidermis and guard mother cell (GMC) divisions in four-lips mutant guard mother cells are limited by loss of function of CYCD7;1. Hence, the precise activation of a specific D-type cyclin, CYCD7;1, is required for correct timing of the last symmetric division that creates the stomatal guards cells, and CYCD7;1 expression is regulated by the FLP/MYB pathway that ensures cell cycle arrest in the stomatal guard cells.Summary StatementThe formation of paired guard cells in the epidermis of the Arabidopsis thaliana shoot, requires the activity of the D-type cyclin CYCD7;1 for the normal timing of the final division.


Sign in / Sign up

Export Citation Format

Share Document