Faculty Opinions recommendation of G1/S Transcription Factor Copy Number Is a Growth-Dependent Determinant of Cell Cycle Commitment in Yeast.

Author(s):  
Christopher McInerny
1994 ◽  
Vol 14 (3) ◽  
pp. 2041-2047
Author(s):  
C B Epstein ◽  
F R Cross

Cell cycle START in Saccharomyces cerevisiae requires at least one of the three CLN genes (CLN1, CLN2, or CLN3). A total of 12 mutations bypassing this requirement were found to be dominant mutations in a single gene that we named BYC1 (for bypass of CLN requirement). We also isolated a plasmid that had cln bypass activity at a low copy number; the gene responsible was distinct from BYC1 and was identical to the recently described BCK2 gene. Strains carrying bck2::ARG4 disruption alleles were fully viable, but bck2::ARG4 completely suppressed the cln bypass activity of BYC1. swi4 and swi6 deletion alleles also efficiently suppressed BYC1 cln bypass activity; Swi4 and Swi6 are components of a transcription factor previously implicated in control of CLN1 and CLN2 expression. bck2::ARG4 was synthetically lethal with cln3 deletion, suggesting that CLN1 and CLN2 cannot function in the simultaneous absence of BCK2 and CLN3; this observation correlates with low expression of CLN1 and CLN2 in bck2 strains deprived of CLN3 function. Thus, factors implicated in CLN1 and CLN2 expression and/or function are also required for BYC1 function in the absence of all three CLN genes; this may suggest the involvement of other targets of Swi4, Swi6, and Bck2 in START.


Cell Systems ◽  
2018 ◽  
Vol 6 (5) ◽  
pp. 539-554.e11 ◽  
Author(s):  
Savanna Dorsey ◽  
Sylvain Tollis ◽  
Jing Cheng ◽  
Labe Black ◽  
Stephen Notley ◽  
...  

1994 ◽  
Vol 14 (3) ◽  
pp. 2041-2047 ◽  
Author(s):  
C B Epstein ◽  
F R Cross

Cell cycle START in Saccharomyces cerevisiae requires at least one of the three CLN genes (CLN1, CLN2, or CLN3). A total of 12 mutations bypassing this requirement were found to be dominant mutations in a single gene that we named BYC1 (for bypass of CLN requirement). We also isolated a plasmid that had cln bypass activity at a low copy number; the gene responsible was distinct from BYC1 and was identical to the recently described BCK2 gene. Strains carrying bck2::ARG4 disruption alleles were fully viable, but bck2::ARG4 completely suppressed the cln bypass activity of BYC1. swi4 and swi6 deletion alleles also efficiently suppressed BYC1 cln bypass activity; Swi4 and Swi6 are components of a transcription factor previously implicated in control of CLN1 and CLN2 expression. bck2::ARG4 was synthetically lethal with cln3 deletion, suggesting that CLN1 and CLN2 cannot function in the simultaneous absence of BCK2 and CLN3; this observation correlates with low expression of CLN1 and CLN2 in bck2 strains deprived of CLN3 function. Thus, factors implicated in CLN1 and CLN2 expression and/or function are also required for BYC1 function in the absence of all three CLN genes; this may suggest the involvement of other targets of Swi4, Swi6, and Bck2 in START.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kalyan Mahapatra ◽  
Sujit Roy

AbstractAs like in mammalian system, the DNA damage responsive cell cycle checkpoint functions play crucial role for maintenance of genome stability in plants through repairing of damages in DNA and induction of programmed cell death or endoreduplication by extensive regulation of progression of cell cycle. ATM and ATR (ATAXIA-TELANGIECTASIA-MUTATED and -RAD3-RELATED) function as sensor kinases and play key role in the transmission of DNA damage signals to the downstream components of cell cycle regulatory network. The plant-specific NAC domain family transcription factor SOG1 (SUPPRESSOR OF GAMMA RESPONSE 1) plays crucial role in transducing signals from both ATM and ATR in presence of double strand breaks (DSBs) in the genome and found to play crucial role in the regulation of key genes involved in cell cycle progression, DNA damage repair, endoreduplication and programmed cell death. Here we report that Arabidopsis exposed to high salinity shows generation of oxidative stress induced DSBs along with the concomitant induction of endoreduplication, displaying increased cell size and DNA ploidy level without any change in chromosome number. These responses were significantly prominent in SOG1 overexpression line than wild-type Arabidopsis, while sog1 mutant lines showed much compromised induction of endoreduplication under salinity stress. We have found that both ATM-SOG1 and ATR-SOG1 pathways are involved in the salinity mediated induction of endoreduplication. SOG1was found to promote G2-M phase arrest in Arabidopsis under salinity stress by downregulating the expression of the key cell cycle regulators, including CDKB1;1, CDKB2;1, and CYCB1;1, while upregulating the expression of WEE1 kinase, CCS52A and E2Fa, which act as important regulators for induction of endoreduplication. Our results suggest that Arabidopsis undergoes endoreduplicative cycle in response to salinity induced DSBs, showcasing an adaptive response in plants under salinity stress.


2014 ◽  
Vol 99 (7) ◽  
pp. E1163-E1172 ◽  
Author(s):  
Wei Qiang ◽  
Yuan Zhao ◽  
Qi Yang ◽  
Wei Liu ◽  
Haixia Guan ◽  
...  

Context: ZIC1 has been reported to be overexpressed and plays an oncogenic role in some brain tumors, whereas it is inactivated by promoter hypermethylation and acts as a tumor suppressor in gastric and colorectal cancers. However, until now, its biological role in thyroid cancer remains totally unknown. Objectives: The aim of this study is to explore the biological functions and related molecular mechanism of ZIC1 in thyroid carcinogenesis. Setting and Design: Quantitative RT-PCR (qRT-PCR) was performed to evaluate mRNA expression of investigated genes. Methylation-specific PCR was used to analyze promoter methylation of the ZIC1 gene. The functions of ectopic ZIC1 expression in thyroid cancer cells were determined by cell proliferation and colony formation, cell cycle and apoptosis, as well as cell migration and invasion assays. Results: ZIC1 was frequently down-regulated by promoter hypermethylation in both primary thyroid cancer tissues and thyroid cancer cell lines. Moreover, our data showed that ZIC1 hypermethylation was significantly associated with lymph node metastasis in patients with papillary thyroid cancer. Notably, restoration of ZIC1 expression in thyroid cancer cells dramatically inhibited cell proliferation, colony formation, migration and invasion, and induced cell cycle arrest and apoptosis by blocking the activities of the phosphatidylinositol-3-kinase (PI3K)/Akt and RAS/RAF/MEK/ERK (MAPK) pathways, and enhancing FOXO3a transcriptional activity. Conclusions: Our data demonstrate that ZIC1 is frequently inactivated by promoter hypermethyaltion and functions as a tumor suppressor in thyroid cancer through modulating PI3K/Akt and MAPK signaling pathways and transcription factor FOXO3a.


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Bryana N Harris ◽  
Laura Woo ◽  
Jeffrey J Saucerman

Rationale: Heart failure is caused by the inability of adult mammalian hearts to overcome the loss of cardiomyocytes (CMs). This is due partly to the limited proliferative capacity of CMs, which exit the cell cycle and do not undergo cell division. Current knowledge in cardiac regeneration lacks an understanding of the molecular regulatory networks that determine whether CMs will progress through the cell cycle to proliferate. Our goal is to use computational modeling to understand the expression and activation levels of the core cell cycle network, specifically cyclins and cyclin-cyclin-dependent kinase (CDK) complexes. Methods: A model of core cell cycle dynamics was curated using previously published studies of CM proliferation regulators. This model incorporates those regulators known to stimulate G1/S and G2/M transitions through the core CDKs. The activity of each of the 22 network nodes (22 reactions) was predicted using a logic-based differential equation approach. The CDK model was then coupled with a minimal ODE model of cell cycle phase distributions and validated based on descriptions and experimental data from the literature. To prioritize key nodes for experimental validation, we performed a sensitivity analysis by stimulating individual knockdown for every node in the network, measuring the fractional activity of all nodes. Results: Our model confirmed that the knockdown of p21 and Rb protein and the overexpression of E2F transcription factor and cyclinD-cdk4 showed an increase in cells going through DNA synthesis and entering mitosis. A combined knockdown of p21 and p27 showed an increase of cells entering mitosis. Cyclin D-cdk4 and p21 overexpression showed a decrease and increase of Rb expression, respectively. Of the 14 model predictions, 12 agreed with experimental data in the literature. A comprehensive knockdown of the model nodes suggests that E2F (a key transcription factor driving DNA synthesis) is positively regulated by cyclin D while negatively regulated by GSK3B, SMAD3, and pRB. Conclusion: This model enables us to predict how cardiomyocytes respond to stimuli in the CDK network and identify potential therapeutic regulators that induce cardiomyocyte proliferation.


1991 ◽  
Vol 11 (11) ◽  
pp. 5710-5717
Author(s):  
E A Malone ◽  
C D Clark ◽  
A Chiang ◽  
F Winston

SPT16 was previously identified as a high-copy-number suppressor of delta insertion mutations in the 5' regions of the HIS4 and LYS2 genes of Saccharomyces cerevisiae. We have constructed null mutations in the SPT16 gene and have demonstrated that it is essential for growth. Temperature-sensitive-lethality spt16 alleles have been isolated and shown to be pleiotropic; at a temperature permissive for growth, spt16 mutations suppress delta insertion mutations, a deletion of the SUC2 upstream activating sequence, and mutations in trans-acting genes required for both SUC2 and Ty expression. In addition, SPT16 is identical to CDC68, a gene previously shown to be required for passage through the cell cycle control point START. However, at least some transcriptional effects caused by spt16 mutations are independent of arrest at START. These results and those in the accompanying paper (A. Rowley, R. A. Singer, and G. C. Johnston, Mol. Cell. Biol. 11:5718-5726, 1991) indicate that SPT16/CDC68 is required for normal transcription of many loci in S. cerevisiae.


1999 ◽  
Vol 19 (3) ◽  
pp. 2400-2407 ◽  
Author(s):  
Rong Yang ◽  
Carsten Müller ◽  
Vong Huynh ◽  
Yuen K. Fung ◽  
Amy S. Yee ◽  
...  

ABSTRACT Human cyclin A1, a newly discovered cyclin, is expressed in testis and is thought to function in the meiotic cell cycle. Here, we show that the expression of human cyclin A1 and cyclin A1-associated kinase activities was regulated during the mitotic cell cycle. In the osteosarcoma cell line MG63, cyclin A1 mRNA and protein were present at very low levels in cells at the G0 phase. They increased during the progression of the cell cycle and reached the highest levels in the S and G2/M phases. Furthermore, the cyclin A1-associated histone H1 kinase activity peaked at the G2/M phase. We report that cyclin A1 could bind to important cell cycle regulators: the Rb family of proteins, the transcription factor E2F-1, and the p21 family of proteins. The in vitro interaction of cyclin A1 with E2F-1 was greatly enhanced when cyclin A1 was complexed with CDK2. Associations of cyclin A1 with Rb and E2F-1 were observed in vivo in several cell lines. When cyclin A1 was coexpressed with CDK2 in sf9 insect cells, the CDK2-cyclin A1 complex had kinase activities for histone H1, E2F-1, and the Rb family of proteins. Our results suggest that the Rb family of proteins and E2F-1 may be important targets for phosphorylation by the cyclin A1-associated kinase. Cyclin A1 may function in the mitotic cell cycle in certain cells.


Sign in / Sign up

Export Citation Format

Share Document