scholarly journals Positive and negative regulation of c-Myb by cyclin D1, cyclin-dependent kinases, and p27 Kip1

Blood ◽  
2005 ◽  
Vol 105 (10) ◽  
pp. 3855-3861 ◽  
Author(s):  
Wanli Lei ◽  
Fan Liu ◽  
Scott A. Ness

AbstractThe c-Myb transcription factor controls differentiation and proliferation in hematopoietic and other cell types and has latent transforming activity, but little is known about its regulation during the cell cycle. Here, c-Myb was identified as part of a protein complex from human T cells containing the cyclin-dependent kinase (CDK) CDK6. Assays using model reporter constructs as well as endogenous target genes showed that the activity of c-Myb was inhibited by cyclin D1 plus CDK4 or CDK6 but stimulated by expression of the CDK inhibitors p16 Ink4a, p21 Cip1, or p27 Kip1. Mapping experiments identified a highly conserved region in c-Myb which, when transferred to the related A-Myb transcription factor, also rendered it responsive to CDKs and p27. The results suggest that c-Myb activity is directly regulated by cyclin D1 and CDKs and imply that c-Myb activity is regulated during the cell cycle in hematopoietic cells.

Oncogenesis ◽  
2021 ◽  
Vol 10 (5) ◽  
Author(s):  
Lucas Schneider ◽  
Stefanie Herkt ◽  
Lei Wang ◽  
Christine Feld ◽  
Josephine Wesely ◽  
...  

AbstractThe establishment of cell type specific gene expression by transcription factors and their epigenetic cofactors is central for cell fate decisions. Protein arginine methyltransferase 6 (PRMT6) is an epigenetic regulator of gene expression mainly through methylating arginines at histone H3. This way it influences cellular differentiation and proliferation. PRMT6 lacks DNA-binding capability but is recruited by transcription factors to regulate gene expression. However, currently only a limited number of transcription factors have been identified, which facilitate recruitment of PRMT6 to key cell cycle related target genes. Here, we show that LEF1 contributes to the recruitment of PRMT6 to the central cell cycle regulator CCND1 (Cyclin D1). We identified LEF1 as an interaction partner of PRMT6. Knockdown of LEF1 or PRMT6 reduces CCND1 expression. This is in line with our observation that knockdown of PRMT6 increases the number of cells in G1 phase of the cell cycle and decreases proliferation. These results improve the understanding of PRMT6 activity in cell cycle regulation. We expect that these insights will foster the rational development and usage of specific PRMT6 inhibitors for cancer therapy.


2017 ◽  
Author(s):  
Scott Ronquist ◽  
Geoff Patterson ◽  
Markus Brown ◽  
Stephen Lindsly ◽  
Haiming Chen ◽  
...  

AbstractThe day we understand the time evolution of subcellular elements at a level of detail comparable to physical systems governed by Newton’s laws of motion seems far away. Even so, quantitative approaches to cellular dynamics add to our understanding of cell biology, providing data-guided frameworks that allow us to develop better predictions about, and methods for, control over specific biological processes and system-wide cell behavior. In this paper, we describe an approach to optimizing the use of transcription factors (TFs) in the context of cellular reprogramming. We construct an approximate model for the natural evolution of a cell cycle synchronized population of human fibroblasts, based on data obtained by sampling the expression of 22,083 genes at several time points along the cell cycle. In order to arrive at a model of moderate complexity, we cluster gene expression based on the division of the genome into topologically associating domains (TADs) and then model the dynamics of the TAD expression levels. Based on this dynamical model and known bioinformatics, such as transcription factor binding sites (TFBS) and functions, we develop a methodology for identifying the top transcription factor candidates for a specific cellular reprogramming task. The approach used is based on a device commonly used in optimal control. Our data-guided methodology identifies a number of transcription factors previously validated for reprogramming and/or natural differentiation. Our findings highlight the immense potential of dynamical models, mathematics, and data-guided methodologies for improving strategies for control over biological processes.Significance StatementReprogramming the human genome toward any desirable state is within reach; application of select transcription factors drives cell types toward different lineages in many settings. We introduce the concept of data-guided control in building a universal algorithm for directly reprogramming any human cell type into any other type. Our algorithm is based on time series genome transcription and architecture data and known regulatory activities of transcription factors, with natural dimension reduction using genome architectural features. Our algorithm predicts known reprogramming factors, top candidates for new settings, and ideal timing for application of transcription factors. This framework can be used to develop strategies for tissue regeneration, cancer cell reprogramming, and control of dynamical systems beyond cell biology.


2007 ◽  
Vol 27 (23) ◽  
pp. 8259-8270 ◽  
Author(s):  
Ulrich Schüller ◽  
Qing Zhao ◽  
Susana A. Godinho ◽  
Vivi M. Heine ◽  
René H. Medema ◽  
...  

ABSTRACT The forkhead transcription factor FoxM1 has been reported to regulate, variously, proliferation and/or spindle formation during the G2/M transition of the cell cycle. Here we define specific functions of FoxM1 during brain development by the investigation of FoxM1 loss-of-function mutations in the context of Sonic hedgehog (Shh)-induced neuroproliferation in cerebellar granule neuron precursors (CGNP). We show that FoxM1 is expressed in the cerebellar anlagen as well as in postnatal proliferating CGNP and that it is upregulated in response to activated Shh signaling. To determine the requirements for FoxM1 function, we used transgenic mice carrying conventional null alleles or conditionally targeted alleles in conjunction with specific Cre recombinase expression in CGNP or early neural precursors driven by Math1 or Nestin enhancers. Although the overall cerebellar morphology was grossly normal, we observed that the entry into mitosis was postponed both in vivo and in Shh-treated CGNP cultures. Cell cycle analysis and immunohistochemistry with antibodies against phosphorylated histone H3 indicated a significant delay in the G2/M transition. Consistent with this, FoxM1-deficient CGNP showed decreased levels of the cyclin B1 and Cdc25b proteins. Furthermore, the loss of FoxM1 resulted in spindle defects and centrosome amplification. These findings indicate that the functions of FoxM1 in Shh-induced neuroproliferation are restricted to the regulation of the G2/M transition in CGNP, most probably through transcriptional effects on target genes such as those coding for B-type cyclins.


2002 ◽  
Vol 22 (11) ◽  
pp. 3663-3673 ◽  
Author(s):  
Xiaolin Li ◽  
Donald P. McDonnell

ABSTRACT The B-Myb transcription factor has been implicated in coordinating the expression of genes involved in cell cycle regulation. Although it is expressed in a ubiquitous manner, its transcriptional activity is repressed until the G1-S phase of the cell cycle by an unknown mechanism. In this study we used biochemical and cell-based assays to demonstrate that the nuclear receptor corepressors N-CoR and SMRT interact with B-Myb. The significance of these B-Myb-corepressor interactions was confirmed by the finding that B-Myb mutants, which were unable to bind N-CoR, exhibited constitutive transcriptional activity. It has been shown previously that phosphorylation of B-Myb by cdk2/cyclin A enhances its transcriptional activity. We have now determined that phosphorylation by cdk2/cyclin A blocks the interaction between B-Myb and N-CoR and that mutation of the corepressor binding site within B-Myb bypasses the requirement for this phosphorylation event. Cumulatively, these findings suggest that the nuclear corepressors N-CoR and SMRT serve a previously unappreciated role as regulators of B-Myb transcriptional activity.


2003 ◽  
Vol 23 (1) ◽  
pp. 359-369 ◽  
Author(s):  
Nobuhito Goda ◽  
Heather E. Ryan ◽  
Bahram Khadivi ◽  
Wayne McNulty ◽  
Robert C. Rickert ◽  
...  

ABSTRACT A classical cellular response to hypoxia is a cessation of growth. Hypoxia-induced growth arrest differs in different cell types but is likely an essential aspect of the response to wounding and injury. An important component of the hypoxic response is the activation of the hypoxia-inducible factor 1 (HIF-1) transcription factor. Although this transcription factor is essential for adaptation to low oxygen levels, the mechanisms through which it influences cell cycle arrest, including the degree to which it cooperates with the tumor suppressor protein p53, remain poorly understood. To determine broadly relevant aspects of HIF-1 function in primary cell growth arrest, we examined two different primary differentiated cell types which contained a deletable allele of the oxygen-sensitive component of HIF-1, the HIF-1α gene product. The two cell types were murine embryonic fibroblasts and splenic B lymphocytes; to determine how the function of HIF-1α influenced p53, we also created double-knockout (HIF-1α null, p53 null) strains and cells. In both cell types, loss of HIF-1α abolished hypoxia-induced growth arrest and did this in a p53-independent fashion. Surprisingly, in all cases, cells lacking both p53 and HIF-1α genes have completely lost the ability to alter the cell cycle in response to hypoxia. In addition, we have found that the loss of HIF-1α causes an increased progression into S phase during hypoxia, rather than a growth arrest. We show that hypoxia causes a HIF-1α-dependent increase in the expression of the cyclin-dependent kinase inhibitors p21 and p27; we also find that hypophosphorylation of retinoblastoma protein in hypoxia is HIF-1α dependent. These data demonstrate that the transcription factor HIF-1 is a major regulator of cell cycle arrest in primary cells during hypoxia.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 776-776
Author(s):  
Zhongfa Yang ◽  
Alan G. Rosmarin

Abstract GABP is an ets transcription factor that regulates transcription of key myeloid genes, including CD18 (beta2 leukocyte integrin), neutrophil elastase, lysozyme, and other key mediators of the inflammatory response; it is also known to regulate important cell cycle control genes. GABP consists of two distinct and unrelated proteins that, together, form a functional transcription factor complex. GABPalpha (GABPa) is an ets protein that binds to DNA; it forms a tetrameric complex by recruiting its partner, GABPbeta (GABPb), which contains the transactivation domain. GABPa is a single copy gene in both the human and murine genomes and it is the only protein that can recruit GABPb to DNA. We cloned GABPa from a murine genomic BAC library and prepared a targeting vector in which exon 9 (which encodes the GABPa ets domain) was flanked by loxP (floxed) recombination sites. The targeting construct was electroporated into embryonic stem cells, homologous recombinants were implanted into pseudopregnant mice, heterozygous floxed GABPa mice were identified, and intercrossing yielded expected Mendelian ratios of wild type, heterozygous, and homozygous floxed GABPa mice. Breeding of heterozygous floxed GABPa mice to CMV-Cre mice (which express Cre recombinase in all tissues) yielded expected numbers of hemizygous mice (only one intact GABPa allele), but no nullizygous (GABPa−/−) mice among 64 pups; we conclude that homozygous deletion of GABPa causes an embryonic lethal defect. To determine the effect of GABPa deletion on myeloid cell development, we bred heterozygous and homozygous floxed mice to LysMCre mice, which express Cre only in myeloid cells. These mice had a normal complement of myeloid cells but, unexpectedly, PCR indicated that their Gr1+ myeloid cells retained an intact (undeleted) floxed GABPa allele. We detected similar numbers of in vitro myeloid colonies from bone marrow of wild type, heterozygous floxed, and homozygous floxed progeny of LysMCre matings. However, PCR of twenty individual in vitro colonies from homozygous floxed mice indicated that they all retained an intact floxed allele. Breeding of floxed GABPa/LysMCre mice with hemizygous mice indicated that retention of a floxed allele was not due to incomplete deletion by LysMCre; rather, it appears that only myeloid cells that retain an intact GABPa allele can survive to mature in vitro or in vivo. We prepared murine embryonic fibroblasts from homozygous floxed mice and efficiently deleted GABPa in vitro. We found striking abnormalities in proliferation and G1/S phase arrest. We used quantitative RT-PCR to identify mechanisms that account for the altered growth of GABPa null cells. We found dramatically reduced expression of known GABP target genes that regulate DNA synthesis and cell cycle that appear to account for the proliferative defect. We conclude that GABPa is required for growth and maturation of myeloid cells and we identified downstream targets that may account for their failure to proliferate and mature in vitro and in vivo.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 953-953 ◽  
Author(s):  
Linda Resar ◽  
Joelle Hillion ◽  
Katrina Alino ◽  
Michelle Rudek ◽  
Judith Karp

Abstract Acute leukemia in adults continues to be a formidable clinical challenge that demands further investigation to identify more rational therapies. To optimize anti-leukemia therapy, we are investigating the prototypical cyclin dependent kinase (cdk) inhibitor, flavopiridol, in refractory or poor-risk disease. Flavopiridol is a cytotoxic molecule that is thought to induce cell cycle arrest by blocking cyclin-dependent kinase (cdk) function, thereby interfering with RNA Polymerase II activity and globally down-regulating gene expression. In the setting of pan-cdk inhibition, E2F1 is released and appears to drive apoptosis in transformed cells. Consistent with these proposed mechanisms of action, a previous study from our group showed that flavopiridol induces apoptosis in vitro in leukemic blasts from patients with refractory leukemia. Administration of flavopiridol was associated with a decrease in one or more of the following proteins in the leukemic blasts: RNA Polymerase II, STAT3, cyclin D1, Bcl-2, and Mcl-1. Serum VEGF levels also decreased in most patients. We are now investigating mRNA levels of the genes encoding these proteins by quantitative, RT-PCR in leukemic blasts from adult patients with refractory or poor-risk leukemia before and after flavopiridol therapy. We have treated 26 patients with flavopiridol at an escalating, hybrid dose followed by ara-c and mitxantrone. Adequate RNA from leukemic blasts before and after flavopiridol administration was available from 8 of 11 patients studied thus far. All cases (8/8) exhibit a marked decrease in mRNA for VEGF following flavopiridol. mRNA levels for other putative flavopiridol target genes is also decreased in a subset of leukemic blast samples after therapy, as follows: E2F1 (6/8), STAT3 (6/8), Mcl-1 (6/8), RNA Polymerase subunit 2a (3/3), and cyclin D1 (2/3). In contrast, bcl-2 mRNA levels increased after flavopiridol in most cases (7/8), which could represent a compensatory mechanism of leukemic blasts to avoid apoptotic cell death. Our preliminary studies indicate that flavopiridol is cytotoxic in poor-risk and refractory acute leukemia. Studies are underway to determine if down-regulation of any putative target genes correlates with pharmacologic data or clinical responses.


2006 ◽  
Vol 26 (9) ◽  
pp. 3565-3581 ◽  
Author(s):  
El Bachir Affar ◽  
Frédérique Gay ◽  
Yujiang Shi ◽  
Huifei Liu ◽  
Maite Huarte ◽  
...  

ABSTRACT Constitutive ablation of the Yin Yang 1 (YY1) transcription factor in mice results in peri-implantation lethality. In this study, we used homologous recombination to generate knockout mice carrying yy1 alleles expressing various amounts of YY1. Phenotypic analysis of yy1 mutant embryos expressing ∼75%, ∼50%, and ∼25% of the normal complement of YY1 identified a dosage-dependent requirement for YY1 during late embryogenesis. Indeed, reduction of YY1 levels impairs embryonic growth and viability in a dose-dependent manner. Analysis of the corresponding mouse embryonic fibroblast cells also revealed a tight correlation between YY1 dosage and cell proliferation, with a complete ablation of YY1 inducing cytokinesis failure and cell cycle arrest. Consistently, RNA interference-mediated inhibition of YY1 in HeLa cells prevents cytokinesis, causes proliferative arrest, and increases cellular sensitivity to various apoptotic agents. Genome-wide expression profiling identified a plethora of YY1 target genes that have been implicated in cell growth, proliferation, cytokinesis, apoptosis, development, and differentiation, suggesting that YY1 coordinates multiple essential biological processes through a complex transcriptional network. These data not only shed new light on the molecular basis for YY1 developmental roles and cellular functions, but also provide insight into the general mechanisms controlling eukaryotic cell proliferation, apoptosis, and differentiation.


2018 ◽  
Vol 425 ◽  
pp. 164-173 ◽  
Author(s):  
Karnika Singh ◽  
Qin Dong ◽  
Prakash S. TimiriShanmugam ◽  
Sweaty Koul ◽  
Hari K. Koul

Sign in / Sign up

Export Citation Format

Share Document