scholarly journals Activated Carbon Supported Hafnium(IV) Chloride as an Efficient, Recyclable, and Facile Removable Catalyst for Expeditious Parallel Synthesis of Benzimidazoles

Catalysts ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 436
Author(s):  
Xiao-Chong Peng ◽  
Shan-Shan Gong ◽  
De-Yun Zeng ◽  
Shu-Wang Duo ◽  
Qi Sun

A highly efficient method for parallel synthesis of a diversity of 1,2-disubstituted benzimidazoles from N-substituted phenylenediamines and aldehydes has been developed by using 10 mol% HfCl4 on activated carbon (HfCl4/C) as the catalyst. The newly reported HfCl4/C catalyst not only mediated fast and clean formation of benzimidazoles but also could be easily removed from the reaction solution and reused up to eight times. Scanning electron microscope (SEM) and thermal desorption studies showed that activated carbon could reversibly adsorb and release Hf(IV) in ethanol upon cooling and heating, thereby serving as a thermal-controlled solid support.

Author(s):  
Erik Paul ◽  
Holger Herzog ◽  
Sören Jansen ◽  
Christian Hobert ◽  
Eckhard Langer

Abstract This paper presents an effective device-level failure analysis (FA) method which uses a high-resolution low-kV Scanning Electron Microscope (SEM) in combination with an integrated state-of-the-art nanomanipulator to locate and characterize single defects in failing CMOS devices. The presented case studies utilize several FA-techniques in combination with SEM-based nanoprobing for nanometer node technologies and demonstrate how these methods are used to investigate the root cause of IC device failures. The methodology represents a highly-efficient physical failure analysis flow for 28nm and larger technology nodes.


2019 ◽  
Vol 2 (1) ◽  
pp. 9-13
Author(s):  
Ni Made Dwidiani ◽  
Putu Wijaya Sunu ◽  
Gusti Ngurah Nitya Santhiarsa

This work studies the use of red chilli tree (capsicum anuumm L) waste as material of activated carbon and examines the morphological structure and elemental composition of the activated chili trees. The morphological structure was measured at TekMIRA (Pusat Penelitian dan Pengembangan Teknologi Mineral dan Batubara, Bandung) by using the scanning electron microscope (SEM), and the composition of the elements of carbon, hydrogen, nitrogen and ash is determined by the ultimate testing analysis with the ASTM D5373 standard. In the testing procedure, activated carbon is made from red chili tree waste by dehydration with a temperature of 2000 C for 1 hour and carbonized with a temperature of 3750 C for 1 hour. Then, the chemical activation (NaOH) is made in variation of concentration of 1%, 3%, and 5% with soaked time 24 hours, and dried at 2000 C for one hour. The carbonization at a concentration of 1% (NaOH) gave the best result on activated carbon from red chili trees.


Author(s):  
Kezhen Qi ◽  
Ruidan Wang ◽  
Jiaqi Fu ◽  
Ke Chen ◽  
Chunying Zuo

Hierarchical ZnO crystals with flower-like microstructures were successfully synthesized via a facile hydrothermal route without using any surfactants. The morphology of these microstructures can be easily controlled by adjusting the pH of the reaction solution. The products were characterized by X-ray powder diffraction (XRD) and scanning electron microscope (SEM). Furthermore, a possible growth mechanism of ZnO hierarchical microstructures was proposed.  


Abstract: The photocatalytic composite Fe doped AC/TiO2 has been prepared by sol-gel method. The prepared Fe doped AC/TiO2 composite were characterized by scanning electron microscope (SEM) and X-ray diffraction (XRD).The SEM analysis showed that Fe and TiO2 were attached to the Activated Carbon surfaces. The X-Ray Diffraction data showed that Fe doped AC/TiO2 composite mostly contained anatase phase.


2016 ◽  
Vol 1 (1) ◽  
pp. 47 ◽  
Author(s):  
Andi Muhammad Anshar ◽  
Paulina Taba ◽  
Indah Raya

The purpose of this study was to investigate the adsorption ability of activated carbon from rice husk in adsorbing phenol. Activated carbon used was in this studies burning risk husk at 300 and 400<sup>o</sup>C and then activated by 10% of ZnCl<sub>2</sub>. The from activated carbon was characterized using an Infrared Spectrometer, an X-ray diffraction, an Scanning Electron Microscope, and a gas sorption analyzer. The best activated carbon for adsorbing phenol was the activated carbon that prodused from the burning of rice husk at a temperature 400<sup>o</sup>C and activated with 10% of ZnCl<sub>2</sub> for 24 hours. Adsorption capacity of the best activated carbon was 3.9370 mg/g adsorbent with Gibbs free energy of -25.493 kJ/mol.


Author(s):  
R. E. Ferrell ◽  
G. G. Paulson

The pore spaces in sandstones are the result of the original depositional fabric and the degree of post-depositional alteration that the rock has experienced. The largest pore volumes are present in coarse-grained, well-sorted materials with high sphericity. The chief mechanisms which alter the shape and size of the pores are precipitation of cementing agents and the dissolution of soluble components. Each process may operate alone or in combination with the other, or there may be several generations of cementation and solution.The scanning electron microscope has ‘been used in this study to reveal the morphology of the pore spaces in a variety of moderate porosity, orthoquartzites.


Sign in / Sign up

Export Citation Format

Share Document