scholarly journals Optimization of Synthesis Conditions of Ni/SBA-15 Catalysts: Confined Nanoparticles and Improved Stability in Dry Reforming of Methane

Catalysts ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 44
Author(s):  
Marie-Nour Kaydouh ◽  
Nissrine El Hassan ◽  
Anne Davidson ◽  
Pascale Massiani

Despite its economic and environmental advantages, the dry reforming of methane using supported Ni-based catalysts remains challenging due to problems of metal particle sintering and carbon deposition, which lead to loss in catalytic activity. In this study, different silica supports, containing 5 wt% nickel, were prepared and characterized by N2 sorption, XRD, TPR, and TEM/SEM, in addition to Raman and TGA/MS for the spent catalysts. Different synthesis conditions were thus varied, like nickel deposition method, nature of nickel precursor salt, conditions for thermal activation, and nature of support. The results showed that enhanced metal dispersion, good confinement, and efficient stabilization of the active phase inside the pores can be achieved by using a well-structured mesoporous support. Moreover, it was demonstrated that carbon resistance can be improved when small nickel particles are well confined inside the pores. The strategies that affect the final dispersion of nickel particles, their consequent confinement inside (or deposition outside) the mesopores and the resulting catalytic activity and stability include mainly the application of hydrothermal treatment to the support, the variation of the nature of nickel precursor salt, and the conditions for thermal activation. General guidelines for the preparation of suitable Ni-based catalysts highly active and stable for dry reforming of methane (DRM) are thus presented in this work.


2017 ◽  
Vol 5 (30) ◽  
pp. 15688-15699 ◽  
Author(s):  
R. K. Singha ◽  
A. Shukla ◽  
A. Sandupatla ◽  
G. Deo ◽  
R. Bal

A highly active and stable Pd doped Ni–MgO catalyst for dry reforming of methane (DRM).



Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3347
Author(s):  
Arslan Mazhar ◽  
Asif Hussain Khoja ◽  
Abul Kalam Azad ◽  
Faisal Mushtaq ◽  
Salman Raza Naqvi ◽  
...  

Co/TiO2–MgAl2O4 was investigated in a fixed bed reactor for the dry reforming of methane (DRM) process. Co/TiO2–MgAl2O4 was prepared by modified co-precipitation, followed by the hydrothermal method. The active metal Co was loaded via the wetness impregnation method. The prepared catalyst was characterized by XRD, SEM, TGA, and FTIR. The performance of Co/TiO2–MgAl2O4 for the DRM process was investigated in a reactor with a temperature of 750 °C, a feed ratio (CO2/CH4) of 1, a catalyst loading of 0.5 g, and a feed flow rate of 20 mL min−1. The effect of support interaction with metal and the composite were studied for catalytic activity, the composite showing significantly improved results. Moreover, among the tested Co loadings, 5 wt% Co over the TiO2–MgAl2O4 composite shows the best catalytic performance. The 5%Co/TiO2–MgAl2O4 improved the CH4 and CO2 conversion by up to 70% and 80%, respectively, while the selectivity of H2 and CO improved to 43% and 46.5%, respectively. The achieved H2/CO ratio of 0.9 was due to the excess amount of CO produced because of the higher conversion rate of CO2 and the surface carbon reaction with oxygen species. Furthermore, in a time on stream (TOS) test, the catalyst exhibited 75 h of stability with significant catalytic activity. Catalyst potential lies in catalyst stability and performance results, thus encouraging the further investigation and use of the catalyst for the long-run DRM process.



ChemPlusChem ◽  
2016 ◽  
Vol 81 (4) ◽  
pp. 370-377 ◽  
Author(s):  
Prashanth W. Menezes ◽  
Arindam Indra ◽  
Patrick Littlewood ◽  
Caren Göbel ◽  
Reinhard Schomäcker ◽  
...  


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Mohcin Akri ◽  
Shu Zhao ◽  
Xiaoyu Li ◽  
Ketao Zang ◽  
Adam F. Lee ◽  
...  

AbstractDry reforming of methane (DRM) is an attractive route to utilize CO2 as a chemical feedstock with which to convert CH4 into valuable syngas and simultaneously mitigate both greenhouse gases. Ni-based DRM catalysts are promising due to their high activity and low cost, but suffer from poor stability due to coke formation which has hindered their commercialization. Herein, we report that atomically dispersed Ni single atoms, stabilized by interaction with Ce-doped hydroxyapatite, are highly active and coke-resistant catalytic sites for DRM. Experimental and computational studies reveal that isolated Ni atoms are intrinsically coke-resistant due to their unique ability to only activate the first C-H bond in CH4, thus avoiding methane deep decomposition into carbon. This discovery offers new opportunities to develop large-scale DRM processes using earth abundant catalysts.



Nanomaterials ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 445 ◽  
Author(s):  
Fazia Agueniou ◽  
Hilario Vidal ◽  
María Pilar Yeste ◽  
Juan C. Hernández-Garrido ◽  
Miguel A. Cauqui ◽  
...  

A Ni/CeO2/ZrO2 catalyst with improved redox properties has been washcoated onto a honeycomb cordierite monolith in the form of a nonconventional alumina-catalyst layer, just a few nanometers thick. In spite of the very low active phase loading, the monolith depicts outstanding performance in dry reforming of methane, both in terms of activity, with values reaching the thermodynamic limit already at 750 °C, even under extreme Weight Hourly Space Velocities (WHSV 115–346 L·g−1·h−1), as well as in terms of stability during prolonged Time on Stream (TOS 24–48 h).



2021 ◽  
Vol 281 ◽  
pp. 119459 ◽  
Author(s):  
André L.A. Marinho ◽  
Fabio S. Toniolo ◽  
Fabio B. Noronha ◽  
Florence Epron ◽  
Daniel Duprez ◽  
...  


Materials ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1362
Author(s):  
Carole Tanios ◽  
Cédric Gennequin ◽  
Madona Labaki ◽  
Haingomalala Lucette Tidahy ◽  
Antoine Aboukaïs ◽  
...  

Ni, Co, Mg, and Al mixed-oxide solids, synthesized via the hydrotalcite route, were investigated in previous works toward the dry reforming of methane for hydrogen production. The oxide Co2Ni2Mg2Al2 calcined at 800 °C, Co2Ni2Mg2Al2800, showed the highest catalytic activity in the studied series, which was ascribable to an interaction between Ni and Co, which is optimal for this Co/Ni ratio. In the present study, Co2Ni2Mg2Al2800 was compared to a commercial catalyst widely used in the industry, Ni(50%)/Al2O3, and showed better activity despite its lower number of active sites, as well as lower amounts of carbon on its surface, i.e. less deactivation. In addition to this, Co2Ni2Mg2Al2800 showed stability for 20 h under stream during the dry reforming of methane. This good durability is attributed to a periodic cycle of carbon deposition and removal as well as to the strong interaction between Ni and Co, preventing the deactivation of the catalyst. The evaluation of the catalytic performances in the presence of toluene, which is an impurity that exists in biogas, is also a part of this work. In the presence of toluene, the catalytic activity of Co2Ni2Mg2Al2800 decreases, and higher carbon formation on the catalyst surface is detected. Toluene adsorption on catalytic sites, side reactions performed by toluene, and the competition between toluene and methane in the reaction with carbon dioxide are the main reasons for such results.



RSC Advances ◽  
2014 ◽  
Vol 4 (100) ◽  
pp. 57185-57191 ◽  
Author(s):  
Baowei Wang ◽  
Sihan Liu ◽  
Zongyuan Hu ◽  
Zhenhua Li ◽  
Xinbin Ma

Co3O4 nanoparticles showed high catalytic activity for low temperature CO methanation. CoO is the active phase of the catalyst. Pre-reduction treatment can improve catalytic stability.



Sign in / Sign up

Export Citation Format

Share Document