scholarly journals Effects of Alkali Metals on Nickel/Alumina Catalyzed Ethanol Dry Reforming

Catalysts ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 260
Author(s):  
Se-Won Park ◽  
Dongseok Lee ◽  
Seung-Ik Kim ◽  
Young Jin Kim ◽  
Ji Hoon Park ◽  
...  

Although ethanol dry reforming is an attractive carbon utilization technology, problems of severe coke formation and low catalytic activity should be solved for realization of the technology. We demonstrate the effects of alkali metal additives (lithium, sodium, and potassium) on nickel catalyzed ethanol dry reforming. Potassium doped nickel catalyst (Ni/K2O-Al2O3) showed enhanced catalytic activity and durability in ethanol dry reforming. Thermogravimetric analysis (TGA) showed that Ni/K2O-Al2O3 had a high resistance to coke formation. The amounts of coke formed on Ni/K2O-Al2O3 were 1/3 lower than the amounts of coke formed on Ni/Al2O3. The total coke quantities were closely correlated to the number of basic sites of the nickel catalysts. Raman spectroscopy and transmission electron microscopy analyses revealed that the alkali metals control the coke formation on the catalysts.

Catalysts ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 375
Author(s):  
Adele R. Latypova ◽  
Maxim D. Lebedev ◽  
Evgeniy V. Rumyantsev ◽  
Dmitry V. Filippov ◽  
Olga V. Lefedova ◽  
...  

The article describes the synthesis of aminoorgano-functionalized silica as a prospective material for catalysis application. The amino groups have electron donor properties which are valuable for the metal chemical state of palladium. Therefore, the presence of electron donor groups is important for increasing catalysts’ stability. The research is devoted to the investigation of silica amino-modified support influence on the activity and stability of palladium species in 4-nitroaniline hydrogenation process. A series of catalysts with different supports such as SiO2, SiO2-C3H6-NH2 (amino-functionalized silica), γ-Al2O3 and activated carbon were studied. The catalytic activity was studied in the hydrogenation of 4-nitroaniline to 1,4-phenylenediamine. The catalysts were characterized by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and chemisorption of hydrogen by the pulse technique. The 5 wt.% Pd/SiO2-C3H6-NH2 catalyst exhibited the highest catalytic activity for 4-nitroaniline hydrogenation with 100% conversion and 99% selectivity with respect to 1,4-phenylenediamine.


2014 ◽  
Vol 67 (10) ◽  
pp. 1387 ◽  
Author(s):  
Shi-Qiang Bai ◽  
Lu Jiang ◽  
Sheng-Li Huang ◽  
Ming Lin ◽  
Shuang-Yuan Zhang ◽  
...  

Composite Pd/Fe3O4 (1) was designed and synthesised by immobilization of tridentate pincer ligands with triethoxysilane groups on Fe3O4 nanoparticles, PdII complexation, and in-situ reduction process. The composite was characterised by transmission electron microscopy, scanning electron microscopy energy-dispersive X-ray spectroscopy, powder X-ray diffraction, vibrating sample magnetometer, Fourier transform infrared spectroscopy, thermogravimetric analysis, and Brunauer–Emmett–Teller analysis. The composite featured Pd nanoparticles of ~2–4 nm, exhibited good thermal stability and hydrophilic property as well as excellent catalytic activity towards the reduction of 4-nitrophenol to 4-aminophenol in water.


2018 ◽  
Vol 7 (5) ◽  
pp. 433-440 ◽  
Author(s):  
Zafer Çıplak ◽  
Ceren Gökalp ◽  
Bengü Getiren ◽  
Atila Yıldız ◽  
Nuray Yıldız

Abstract In the present study, the green chemistry approach for the biosynthesis of Ag, Au and Ag-Au bimetallic nanoparticles (NPs) was applied using lichen extract [Cetraria islandica (L.) Ach.]. The lichen extract acts both as a reducing and stabilizing agent. The monometallic and bimetallic NPs were characterized by transmission electron microscopy (TEM), ultraviolet-visible (UV-Vis) spectroscopy and Fourier transform infrared (FTIR) spectroscopy. The results showed that NPs were successfully synthesized and the prepared structures were generally spherical. The synthesized nanostructures exhibited excellent catalytic activities towards reduction of nitrophenols (4-nitrophenol; 4-NP) to aminophenols (4-aminophenol; 4-AP) with sodium borohydride (NaBH4). It was determined that bimetallic NPs exhibit more effective catalytic activity than monometallic Ag and Au nanostructures. This is the first report on 4-NP reduction with Ag, Au and Au-Ag NP catalysts prepared by lichen extract.


Author(s):  
Kainaubek Toshtay ◽  
Ali Auyezov ◽  
Christophe Geantet

The paper considers the diatomite-supported platinum catalyst (1.0 wt% Pt/D) synthesized using colloid adsorption method. The catalyst was characterized by X-ray diffraction, N2 adsorption (BET), scanning electron microscopy and transmission electron microscopy. The activity of the platinum catalyst was investigated by sunflower hydrogenation at 0.5 MPa hydrogen pressure at temperature range from 90°C to 130°C and compared to a commercial Ni catalyst. All of the hydrogenation reactions were terminated at iodine value between approximately 72-86. The results demonstrated that Pt/diatomite catalyst exhibited the highest activity and selectivity at low temperature than the Ni catalyst in hydrogenation processes. Physical characteristics of hydrogenated products such as melting point and solid fat content were also examined.


2021 ◽  
Vol 11 (1) ◽  
pp. xx-xx
Author(s):  
Nga Phan To ◽  
Lien Nguyen Hong ◽  
Tuyen Le Van ◽  
Nhan Phan Chi ◽  
Huyen Phan Thanh

Porous LaFeO3 were synthesised by nanocasting method using mesoporous silica (SBA-15) as a hard template and used as a visible-light-driven photocatalyst. The as-synthesised LaFeO3 photocatalyst were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray Diffraction (XRD), N2 adsorption-desorption, and Ultraviolet–Visible Diffuse Reflectance Spectroscopy (UV-vis DRS). The photo-Fenton catalytic activities of porous LaFeO3 were investigated for the degradation of oily-containing wastewater. The results showed that porous LaFeO3 had better photo-Fenton catalytic activity under visilbe light irradiation than pure LaFeO3. The remarkable improvement photo-Fenton catalytic activity of porous LaFeO3 material could be attributed to the synergistic effect of adsorption and visible light photo-Fenton processes thanks to its porous structure.


Catalysts ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 720 ◽  
Author(s):  
Junwen Wang ◽  
Lichao Ma ◽  
Chuanmin Ding ◽  
Yanan Xue ◽  
Yongkang Zhang ◽  
...  

Highly dispersed ultra-small Pt nanoparticles limited in nanosized silicalite-1 zeolite were prepared by in situ encapsulation strategy using H2PtCl6·6H2O as a precursor and tetrapropylammonium hydroxide as a template. The prepared Pt@S-1 catalyst was characterized by X-ray diffraction (XRD), inductively coupled plasma (ICP), transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), N2 adsorption-desorption, CO adsorption, and TGA techniques and exhibited unmatched catalytic activity and sintering resistance in the partial oxidation of methane to syngas. Strikingly, Pt@S-1 catalyst with further reduced size and increased dispersibility of Pt nanoparticles showed enhanced catalytic activity after low-temperature oxygen calcination. However, for Pt/S-1 catalyst, low-temperature oxygen calcination did not improve its catalytic activity.


Catalysts ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 666
Author(s):  
Chiara Lorecchio ◽  
Emanuela Tamburri ◽  
Laura Lazzarini ◽  
Silvia Orlanducci ◽  
Robertino Zanoni ◽  
...  

Detonation nanodiamonds (DNDs) were functionalized by ruthenium porphyrins and used as catalysts in the cyclopropanation reaction of olefins. The heterogeneous catalyst was characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and XPS (X-ray photoelectron spectroscopy). The XPS was used to control the binding of the ruthenium porphyrin to the DNDs’ surface. This catalyst was used in the cyclopropanation reactions of simple olefins and was reused with no loss of activity in four consecutive cycles, after recovering each time by simple centrifugation.


Catalysts ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 446 ◽  
Author(s):  
Jae-Won Jung ◽  
Won-Il Kim ◽  
Jeong-Rang Kim ◽  
Kyeongseok Oh ◽  
Hyoung Lim Koh

Pt–Sn/Al2O3 catalysts were prepared by the direct reduction method at temperatures from 450 to 900 °C, denoted as an SR series (SR450 to SR900 according to reduction temperature). Direct reduction was performed immediately after catalyst drying without a calcination step. The activity of SR catalysts and a conventionally prepared (Cal600) catalyst were compared to evaluate its effect on direct reduction. Among the SR catalysts, SR550 showed overall higher conversion of propane and propylene selectivity than Cal600. The nano-sized dispersion of metals on SR550 was verified by transmission electron microscopy (TEM) observation. The phases of the bimetallic Pt–Sn alloys were examined by X-ray diffraction, TEM, and energy dispersive X-ray spectroscopy (EDS). Two characteristic peaks of Pt3Sn and PtSn alloys were observed in the XRD patterns, and these phases affected the catalytic performance. Moreover, EDS confirmed the formation of Pt3Sn and PtSn alloys on the catalyst surface. In terms of catalytic activity, the Pt3Sn alloy showed better performance than the PtSn alloy. Relationships between the intermetallic interactions and catalytic activity were investigated using X-ray photoelectron spectroscopy. Furthermore, qualitative analysis of coke formation was conducted after propane dehydrogenation using differential thermal analysis.


2014 ◽  
Vol 70 (a1) ◽  
pp. C512-C512
Author(s):  
Eric Rivera-Muñoz ◽  
Rafael Huirache-Acuña ◽  
Beatriz Millán-Malo ◽  
Rufino Nava ◽  
Barbara Pawelec ◽  
...  

Mesoporous and silica-based SBA-15 and SBA-16 materials were used as supports of novel nanostructured ternary Co(Ni)-Mo-W hydrodesulphurization (HDS) catalysts. These materials have shown a high catalytic activity in HDS of dibenzothiophene (DBT) reactions, even much higher compared with commercial catalysts. An exploration was made on the structure of both the supports as well as on tri-metallic sulfide HDS catalysts. The sulfided catalysts were tested in the HDS of DBT performed in a batch reactor at 623 K and total pressure of 3.1 MPa. The calcined and fresh sulfide catalysts were characterized by a variety of techniques, such as N2 adsorption-desorption isotherms, Temperature-Programmed Desorption (TPD) of NH3, X-ray Diffraction (XRD) and High Resolution Transmission Electron Microscopy (HRTEM). It has been found that both the morphology of the supports as its modification with varying amounts of phosphorus affect the catalytic activity of these nanostructured materials in HDS of DBT reactions. Furthermore, the nanostructures which correspond to the tri-metallic sulfided catalysts exhibit a typical morphology of MoS2 – 2H structure. The present work shows the microstructural study of these nanostructured materials, carried out from HRTEM images and XRD analysis. Both techniques, X–ray Diffractometry and High Resolution Transmission Electron Microscopy, play a fundamental role in the characterization of the microstructure of HDS catalytic nanomaterials, as well as in understanding the various phenomena involved, starting from the synthesis process unto the final performance of those materials.


NANO ◽  
2014 ◽  
Vol 09 (03) ◽  
pp. 1450041 ◽  
Author(s):  
HUAN LIU ◽  
JIE BAI ◽  
QI WANG ◽  
CHUNPING LI ◽  
SHAN WANG ◽  
...  

Ag nanoparticles ( Ag NPs) embedded carbon nanofibers (CNFs) were prepared by a new route which included chemical reaction process, electrospinning and calcination technique. The morphology and structure of the composite nanofibers were investigated by scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy and X-ray diffraction. It indicated that Ag NPs were uniformly distributed in the CNFs. This effective synthesis method can be used to prepare other composite nanofibers with functionality. The Ag NPs/CNFs that served as supported catalysts were used in the styrene epoxidation by TBHP. The Ag NPs/CNFs catalyst showed its highly catalytic activity for the epoxidation of styrene (conversion: 40.6%, SO selectivity: 35.9%). This kind of composite nanofiber membrane was proved effectively catalytic activity and recycled easily in the styrene epoxidation.


Sign in / Sign up

Export Citation Format

Share Document