scholarly journals Single Atomic Pt on SrTiO3 Catalyst in Reverse Water Gas Shift Reactions

Catalysts ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 738
Author(s):  
Yimeng Xing ◽  
Mengyao Ouyang ◽  
Lingling Zhang ◽  
Ming Yang ◽  
Xiaodong Wu ◽  
...  

Copper catalysts were widely developed for CO2 conversion, but suffered severe sintering at temperatures higher than 300 °C. Platinum was the most active and stable metal for RWGS reactions. However, the high price and scarcity of platinum restrained its application. Downsizing the metal particles can significantly improve the atom efficiency of the precious metal but the size effect of Pt on RWGS reactions was still unclear. In the present work, the single atomic Pt on SrTiO3 was prepared using an impregnation leaching method, and the catalyst showed significant activity for an RWGS reaction, achieving a CO2 conversion rate of 45%, a CO selectivity of 100% and a TOF of 0.643 s−1 at 500 °C. The structures of the catalysts were characterized using XRD, STEM and EXAFS. Especially, the size effect of Pt in RWGS was researched using in situ FTIR and DFT calculations. The results reveal that single Pt atoms are the most active species in RWGS via a “–COOH route” while larger Pt cluster and nanoparticles facilitate the further hydrogenation of CO. The reaction between formate and H* is the rate determination step of an RWGS reaction on a catalyst, in which the reaction barrier can be lowered from 1.54 eV on Pt clusters to 1.29 eV on a single atomic Pt.

Author(s):  
Bin Shao ◽  
Guihua Hu ◽  
Khalil A.M. Alkebsi ◽  
Guanghua Ye ◽  
Xiaoqing Lin ◽  
...  

The integration of carbon capture and CO2 utilization could be a promising solution to the crisis of global warming. By integrating the calcium-looping (CaL) and the reverse-water-gas-shift (RWGS) reaction, a...


Catalysts ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1076
Author(s):  
Lucy Idowu Ajakaiye Jensen ◽  
Sara Blomberg ◽  
Christian Hulteberg

Catalytic conversion of CO2 to CO using reverse water gas shift (RWGS) reaction is a key intermediate step for many CO2 utilization processes. RWGS followed by well-known synthesis gas conversion may emerge as a potential approach to convert CO2 to valuable chemicals and fuels. Nickel (Ni) based catalysts with ceria-zirconia (Ce-Zr) support can be used to tune the metal-support interactions, resulting in a potentially enhanced CO2 hydrogenation rate and elongation of the catalyst lifespan. The thermodynamics of RWGS reaction is favored at high temperature for CO2 conversion. In this paper the effect of Palladium (Pd) and Iridium (Ir) as promoters in the activity of 10 wt%Ni 2 wt%Pd 0.1wt%Ir/CeZrO2 catalyst for the reverse water gas shift reaction was investigated. RWGS was studied for different feed (CO2:H2) ratios. The new active interface between Ni, Pd and Ir particles is proposed to be an important factor in enhancing catalytic activity. 10 wt%Ni 2 wt%Pd 0.1 wt%Ir/CeZrO2 catalyst showed a better activity with CO2 conversion of 52.4% and a CO selectivity of 98% for H2:CO2 (1:1) compared to the activity of 10%Ni/CeZrO2 with CO2 conversion of 49.9% and a CO selectivity of 93%. The catalytic activity for different feed ratios using 10 wt%Ni 2 wt%Pd 0.1 wt%Ir/CeZrO2 were also studied. The use of palladium and iridium boosts the stability and life span of the Ni-based catalysts. This indicates that the catalyst could be used potentially to design RWGS reactors for CO2 utilization units.


2019 ◽  
Vol 55 (29) ◽  
pp. 4178-4181 ◽  
Author(s):  
Yang Yu ◽  
Renxi Jin ◽  
Justin Easa ◽  
Wei Lu ◽  
Man Yang ◽  
...  

Double-shell hollow nanofiber supported copper catalysts with strong metal–support interactions were prepared and applied in the reverse water–gas shift reaction.


Catalysts ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1082 ◽  
Author(s):  
Natalie Utsis ◽  
Miron V. Landau ◽  
Alexander Erenburg ◽  
Moti Herskowitz

The Fe-substituted Ba-hexaaluminates (BaFeHAl) are active catalysts for reverse water-gas shift (RWGS) reaction conducted in chemical looping mode. Increasing of the degree of substitution of Al3+ for Fe3+ ions in co-precipitated BaHAl from 60% (BaFeHAl) to 100% (BaFe-hexaferrite, BaFeHF), growing its surface area from 5 to 30 m2/g, and promotion with potassium increased the CO capacity in isothermal RWGS-CL runs at 350–450 °C, where the hexaaluminate/hexaferrite structure is stable. Increasing H2-reduction temperature converts BaFeHAl to a thermally stable BaFeHF modification that contains additional Ba-O-Fe bridges in its structure, reinforcing the connection between alternatively stacked spinel blocks. This material displayed the highest CO capacity of 400 µmol/g at isothermal RWGS-CL run conducted at 550 °C due to increased concentration of oxygen vacancies reflected by greater surface Fe2+/Fe3+ ratio detected by XPS. The results demonstrate direct connection between CO capacity measured in RWGS-CL experiments and calculated CO2 conversion.


1997 ◽  
Author(s):  
Robert Zubrin ◽  
Mitchell Clapp ◽  
Tom Meyer ◽  
Robert Zubrin ◽  
Mitchell Clapp ◽  
...  

2021 ◽  
Author(s):  
Jun-Ichiro Makiura ◽  
Takuma Higo ◽  
Yutaro Kurosawa ◽  
Kota Murakami ◽  
Shuhei Ogo ◽  
...  

Efficient activation of CO2 at low temperature was achieved by reverse water–gas shift via chemical looping (RWGS-CL) by virtue of fast oxygen ion migration in a Cu–In structured oxide, even at lower temperatures.


Author(s):  
Daiya Kobayashi ◽  
Hirokazu Kobayashi ◽  
Kohei Kusada ◽  
Tomokazu Yamamoto ◽  
Takaaki Toriyama ◽  
...  

We report PtW solid-solution alloy nanoparticles (NPs) as a reverse water-gas shift (RWGS) reaction catalyst for the first time. Atomic-level alloying of Pt and W significantly enhanced the RWGS reaction activity of Pt NPs.


2020 ◽  
Vol 390 ◽  
pp. 124629 ◽  
Author(s):  
Jose A. Hernandez Lalinde ◽  
Pakpong Roongruangsree ◽  
Jan Ilsemann ◽  
Marcus Bäumer ◽  
Jan Kopyscinski

2020 ◽  
Vol 269 ◽  
pp. 118826 ◽  
Author(s):  
Christopher Panaritis ◽  
Johnny Zgheib ◽  
Sayed A.H. Ebrahim ◽  
Martin Couillard ◽  
Elena A. Baranova

Sign in / Sign up

Export Citation Format

Share Document