scholarly journals Microwave-Catalyzed Conversion of Phenolic Resin Waste to Activated Carbon and Its Applications for Removing Ammonium from Water

Catalysts ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 783
Author(s):  
Wen-Hui Kuan ◽  
Yi-Show Hu ◽  
Chen-Yi Chiu ◽  
Kuo-Yung Hung ◽  
Shan-Shan Chou

The influences of reactive and dielectric characteristics of activators were investigated in the microwave-catalyzed conversion of phenolic resin waste to activated carbon (AC). To compare with the dielectric interactions of the microwaves with treated samples, conventional electric heating for AC carbonization was also conducted in parallel. The porosity and chemical features of the prepared AC were examined, and the AC was used to remove ammonium from water through adsorption. The results revealed that KOH-activated wastes developed a highly porous structure, whereas H3PO4 treated wastes were functionalized with surficial phosphate groups. Both of these features were more pronounced in the cases of microwave-catalyzed carbonization than those using conventional electric heating. Because of the intense dielectric interactions of the H3PO4-activated waste with microwave, the abundant phosphate functional groups formed on the phenolic resin waste surface during microwave-catalyzed carbonization. They facilitated the resulting AC as an effective adsorbent for aqueous ammonium.

2017 ◽  
Vol 28 (Suppl. 1) ◽  
pp. 227-240 ◽  
Author(s):  
Nur 'Izzati A. Ghani ◽  
◽  
Nur Yusra Mt Yusuf ◽  
Wan Nor Roslam Wan Isahak ◽  
Mohd Shahbuddin Masdar ◽  
...  

1995 ◽  
Vol 60 (2) ◽  
pp. 172-187 ◽  
Author(s):  
Pavel Fott ◽  
František Kolář ◽  
Zuzana Weishauptová

On carbonizing phenolic resins, the development of porous structure takes place which influences the transport properties of carbonized materials. To give a true picture of this effect, specimens in the shape of plates were prepared and carbonized at various temperatures. The carbonizates obtained were studied by adsorption methods, electron microscopy, and mercury porosimetry. Diffusivities were evaluated in terms of measuring the kinetics of wetting and drying. It was found out that the porous structure of specimens in different stages of carbonization is formed mostly by micropores whose volumes were within 0.06 to 0.22 cm3/g. The maximum micropore volume is reached at the temperature of 750 °C. The dependence of diffusivity on the carbonization temperature is nearly constant at first, begins to increase in the vicinity of 400 °C, and at 600 °C attains its maximum. The experimental results reached are in agreement with the conception of the development and gradual closing of the microporous structure in the course of carbonization. The dependence of diffusivity on temperature can be expressed by the Arrhenius equation. In this connection, two possible models of mass transport were discussed.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2951
Author(s):  
Mirosław Kwiatkowski ◽  
Jarosław Serafin ◽  
Andy M. Booth ◽  
Beata Michalkiewicz

This paper presents the results of a computer analysis of the effect of activation process temperature on the development of the microporous structure of activated carbon derived from the leaves of common polypody (Polypodium vulgare) via chemical activation with phosphoric acid (H3PO4) at activation temperatures of 700, 800, and 900 °C. An unconventional approach to porous structure analysis, using the new numerical clustering-based adsorption analysis (LBET) method together with the implemented unique gas state equation, was used in this study. The LBET method is based on unique mathematical models that take into account, in addition to surface heterogeneity, the possibility of molecule clusters branching and the geometric and energy limitations of adsorbate cluster formation. It enabled us to determine a set of parameters comprehensively and reliably describing the porous structure of carbon material on the basis of the determined adsorption isotherm. Porous structure analyses using the LBET method were based on nitrogen (N2), carbon dioxide (CO2), and methane (CH4) adsorption isotherms determined for individual activated carbon. The analyses carried out showed the highest CO2 adsorption capacity for activated carbon obtained was at an activation temperature of 900 °C, a value only slightly higher than that obtained for activated carbon prepared at 700 °C, but the values of geometrical parameters determined for these activated carbons showed significant differences. The results of the analyses obtained with the LBET method were also compared with the results of iodine number analysis and the results obtained with the Brunauer–Emmett–Teller (BET), Dubinin–Radushkevich (DR), and quenched solid density functional theory (QSDFT) methods, demonstrating their complementarity.


2015 ◽  
Vol 3 (3) ◽  
pp. 1504-1512 ◽  
Author(s):  
Duanyi Zhang ◽  
Jiao Yin ◽  
Jiquan Zhao ◽  
Hui Zhu ◽  
Chuanyi Wang

2021 ◽  
Vol 316 ◽  
pp. 153-158
Author(s):  
Boris M. Goltsman ◽  
Lyubov A. Yatsenko ◽  
Natalia S. Goltsman

The article discusses the peculiarities of the "water-glass – glycerol" foaming mixture components interaction during foam glass synthesis. The important role of the foaming additive type in the foam glass porous structure formation was described, the main foaming substances were listed. The obtaining and researching technology of the samples was described, the compositions of the initial batches using the "water-glass – glycerol" mixture were developed. It was shown that a material with a highly porous structure and density below 500 kg/m3 can be obtained only with the combined introduction of water-glass and glycerol. In this case, mixtures with a predominance of water-glass in the foaming mixture possess optimal properties. Using DSC, it was shown that the addition of water-glass to the mixture completely eliminates the evaporation of glycerol at lower temperatures and intensifies its combustion at higher temperatures. Thus, the addition of water-glass to the glycerol-based foam glass batch allows glycerol to be saved up to higher temperatures that increases the resulting material porosity.


RSC Advances ◽  
2015 ◽  
Vol 5 (47) ◽  
pp. 37539-37544 ◽  
Author(s):  
Renping Tian ◽  
Peng Zhang ◽  
Ruihua Lv ◽  
Bing Na ◽  
Qingxian Liu ◽  
...  

Highly porous polylactide fibers with very large surface area were produced by swelling-crystallization of as-spun counterparts in a poor solvent.


Carbon ◽  
2016 ◽  
Vol 107 ◽  
pp. 933
Author(s):  
Kei Kato ◽  
Takuya Yura ◽  
Kiyoharu Nakagawa ◽  
Hirokazu Oda

2021 ◽  
Vol 4 (10(112)) ◽  
pp. 14-23
Author(s):  
Zhadra Tattibayeva ◽  
Sagdat Tazhibayeva ◽  
Wojciech Kujawski ◽  
Bolatkhan Zayadan ◽  
Kuanyshbek Мusabekov ◽  
...  

For purposeful control of the adsorption process, a comprehensive study of the properties of the original cells and the effect of metal ions on them is necessary. In this regard, the features of the adsorption of Cr(III) ions on the cell surface of Spirulina platensis algae were studied. FTIR spectroscopy revealed that the main functional groups responsible for the binding of Cr(III) ions are carboxyl, hydroxyl, amino, and phosphate groups on the surface of algae. The adsorption data were processed using the Langmuir and Freundlich models. It is shown that the maximum adsorption of Cr(III) ions on the surface of algae cells is 31.25 mg/g. The Freundlich constant 1/n is 0.65. The study of the effect of the concentration of Cr(III) ions on the Zeta-potential of algae cells revealed an abnormal increase in the negative value of the ζ – potential at 10–5 mol/L, caused by the release of an additional amount of anionic functional groups to the surface. A further increase in the concentration of Cr(III) ions in the algae suspension leads to a decrease in the ζ – potential and recharge of the surface at C>10–2 mol/L. It was found that the adsorption of Cr(III) ions also affects the morphology of the cell surface. If before contact with Cr(III) ions, the surface of algae cells is represented as a uniform green grid, after adsorption of Cr(III) ions, the surface becomes green-brown, with swollen spirals. The study of the effect of pH on the adsorption and desorption processes shows an increase in the desorption of Cr(III) ions from the surface of algae during acidification of the medium. The adsorption reaches a maximum value in the pH range of 6–7. In the region of optimal Cr(III)/biosorbent ion ratios, the recovery rate of Cr(III) reaches 98.5–99.3 %.


Sign in / Sign up

Export Citation Format

Share Document