scholarly journals Conversion of Scenedesmus rubescens Lipid into Biodiesel by Biochar of Different Origin

Catalysts ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1116
Author(s):  
Vasiliki D. Tsavatopoulou ◽  
Andriana F. Aravantinou ◽  
John Vakros ◽  
Ioannis D. Manariotis

One of the most recent applications studied in recent years is the use of biochar as a catalyst for the conversion of oils into biodiesel. The scope of this work was to evaluate the efficiency of biochars as heterogeneous catalysts for the conversion of Scenedesmus rubescens lipids into biodiesel. Biochar from different materials were employed, namely, malt spent rootlets (MSR), coffee spent grounds (CSG), and olive kernels (OK). Materials were charred at two temperatures (400 and 850 °C) in order to examine the effect of pyrolysis temperature. Homogeneous catalysts such as sulfuric acid and sodium hydroxide were also employed for comparison purposes. In order to explain the different performance of biochar as catalyst, we conducted detailed characterization of these materials. The results of this study showed that homogeneous catalysts (H2SO4 and NaOH) had similar results to the CSG biochar at 400 °C, which was the most productive tested biochar. The pyrolysis temperatures affected the FAMEs recovery of OK and CSG biochar.

1996 ◽  
Vol 61 (8) ◽  
pp. 1158-1166 ◽  
Author(s):  
Jiří Čejka ◽  
Luboš Holý ◽  
Bohdan Kříbek ◽  
Václav Sedláček

The composition of fossil organic matter of different origin and thermal maturation was studied based on the gas chromatographic-mass spectrometric characterization of their pyrolysis products. Increase in the pyrolysis temperature from 300 to 500 °C was found to cause the cracking of aliphatic hydrocarbons resulting in a shortening of the n-alkane chains. High yields of pyrolysis products can be obtained at temperatures above 350 °C; the cracking reactions can be suppressed by applying relatively short duration of pyrolysis. The chromatographic patterns then clearly reflect the origin of the organic matter and degree of its thermal maturation in rocks.


Author(s):  
P.A. Crozier ◽  
M. Pan

Heterogeneous catalysts can be of varying complexity ranging from single or double phase systems to complicated mixtures of metals and oxides with additives to help promote chemical reactions, extend the life of the catalysts, prevent poisoning etc. Although catalysis occurs on the surface of most systems, detailed descriptions of the microstructure and chemistry of catalysts can be helpful for developing an understanding of the mechanism by which a catalyst facilitates a reaction. Recent years have seen continued development and improvement of various TEM, STEM and AEM techniques for yielding information on the structure and chemistry of catalysts on the nanometer scale. Here we review some quantitative approaches to catalyst characterization that have resulted from new developments in instrumentation.HREM has been used to examine structural features of catalysts often by employing profile imaging techniques to study atomic details on the surface. Digital recording techniques employing slow-scan CCD cameras have facilitated the use of low-dose imaging in zeolite structure analysis and electron crystallography. Fig. la shows a low-dose image from SSZ-33 zeolite revealing the presence of a stacking fault.


2020 ◽  
Author(s):  
Wallace Derricotte ◽  
Huiet Joseph

The mechanism of isomerization of hydroxyacetone to 2-hydroxypropanal is studied within the framework of reaction force analysis at the M06-2X/6-311++G(d,p) level of theory. Three unique pathways are considered: (i) a step-wise mechanism that proceeds through formation of the Z-isomer of their shared enediol intermediate, (ii) a step-wise mechanism that forms the E-isomer of the enediol, and (iii) a concerted pathway that bypasses the enediol intermediate. Energy calculations show that the concerted pathway has the lowest activation energy barrier at 45.7 kcal mol<sup>-1</sup>. The reaction force, chemical potential, and reaction electronic flux are calculated for each reaction to characterize electronic changes throughout the mechanism. The reaction force constant is calculated in order to investigate the synchronous/asynchronous nature of the concerted intramolecular proton transfers involved. Additional characterization of synchronicity is provided by calculating the bond fragility spectrum for each mechanism.


2016 ◽  
Author(s):  
Janelle A.F. Heitmeier ◽  
◽  
Emily S. Martin ◽  
Jordan M. Bretzfelder ◽  
D. Alex Patthoff ◽  
...  

Author(s):  
Michael C. Rea

This chapter provides a detailed characterization of the various meanings of the term “divine hiddenness,” carefully and rigorously articulates the version of the problem of divine hiddenness that has dominated contemporary philosophical discussion for the past twenty-five years, and then explains the relationship between that problem and the problem of evil.


Author(s):  
Stefan Gründer

Acid-sensing ion channels (ASICs) are proton-gated Na+ channels. Being almost ubiquitously present in neurons of the vertebrate nervous system, their precise function remained obscure for a long time. Various animal toxins that bind to ASICs with high affinity and specificity have been tremendously helpful in uncovering the role of ASICs. We now know that they contribute to synaptic transmission at excitatory synapses as well as to sensing metabolic acidosis and nociception. Moreover, detailed characterization of mouse models uncovered an unanticipated role of ASICs in disorders of the nervous system like stroke, multiple sclerosis, and pathological pain. This review provides an overview on the expression, structure, and pharmacology of ASICs plus a summary of what is known and what is still unknown about their physiological functions and their roles in diseases.


Author(s):  
Trevor Robbins

A conceptual analysis of the impulsivity construct in behavioral and neurobiological terms is followed by an analysis of its causal role in certain forms of drug addiction in both human and animal studies. The main focus of this chapter is on a rat model of impulsivity based on premature responding in the five-choice serial reaction time task and a more detailed characterization of this phenotype in neurobehavioral, neurochemical, and genetic terms. Evidence is surveyed that high impulsivity on this task is associated with the escalation subsequently of cocaine self-administration behavior and also with a tendency toward compulsive cocaine seeking. Novelty reactivity, by contrast, is associated with the enhanced acquisition of self-administration, but not with the escalation of intravenous self-administration of cocaine or the development of compulsive behavior associated with cocaine seeking. These results indicate that the vulnerability to stimulant addiction may depend on different factors, as expressed through distinct presumed endophenotypes. These observations help us further to dissociate various aspects of the impulsivity construct in neural as well as behavioral terms.


Sign in / Sign up

Export Citation Format

Share Document