scholarly journals Zeolites as Acid/Basic Solid Catalysts: Recent Synthetic Developments

Catalysts ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 248 ◽  
Author(s):  
Valentina Verdoliva ◽  
Michele Saviano ◽  
Stefania De Luca

The zeolites are porous solid structures characterized by a particular framework of aluminosilicates, in which the incorporation of the Al+3 ions generates an excess of negative charge compensated by cations (usually alkali or alkali earth) or protons. In the latter case, they are employed as catalysts for a wide variety of reactions, such as dehydration, skeletal isomerization and cracking, while the catalytic activity of basic zeolites has not found, up to now, any industrial or whatever relevant application in chemical processes. In the present review, we firstly intend to give an overview of the fundamental chemical composition, as well as the structural features of the zeolite framework. The purpose of this paper is to analyze their key properties as acid, both Lewis and Brønsted, and basic solid support. Their application as catalysts is discussed by reviewing the already published works in that field, and a final remark of their still unexplored potential as green, mild, and selective catalyst is also reported.

2020 ◽  
pp. 5-18
Author(s):  
D. V. Prosvirnin ◽  
◽  
M. S. Larionov ◽  
S. V. Pivovarchik ◽  
A. G. Kolmakov ◽  
...  

A review of the literature data on the structural features of TRIP / TWIP steels, their relationship with mechanical properties and the relationship of strength parameters under static and cyclic loading was carried out. It is shown that the level of mechanical properties of such steels is determined by the chemical composition and processing technology (thermal and thermomechanical processing, hot and cold pressure treatment), aimed at achieving a favorable phase composition. At the atomic level, the most important factor is stacking fault energy, the level of which will be decisive in the formation of austenite twins and / or the formation of strain martensite. By selecting the chemical composition, it is possible to set the stacking fault energy corresponding to the necessary mechanical characteristics. In the case of cyclic loads, an important role is played by the strain rate and the maximum load during testing. So at high loading rates and a load approaching the yield strength under tension, the intensity of the twinning processes and the formation of martensite increases. It is shown that one of the relevant ways to further increase of the structural and functional properties of TRIP and TWIP steels is the creation of composite materials on their basis. At present, surface modification and coating, especially by ion-vacuum methods, can be considered the most promising direction for the creation of such composites.


1996 ◽  
Vol 61 (8) ◽  
pp. 1131-1140 ◽  
Author(s):  
Abd El-Aziz Ahmed Said

Vanadium oxide catalysts doped or mixed with 1-50 mole % Fe3+ ions were prepared. The structure of the original samples and those calcined from 200 up to 500 °C were characterized by TG, DTA, IR and X-ray diffraction. The SBET values and texture of the solid catalysts were investigated. The catalytic dehydration-dehydrogenation of isopropanol was carried out at 200 °C using a flow system. The results obtained showed an observable decrease in the activity of V2O5 on the addition of Fe3+ ions. Moreover, Fe2V4O13 is the more active and selective catalyst than FeVO4 spinels. The results were correlated with the active sites created on the catalyst surface.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4508
Author(s):  
Zeinab Mcheik ◽  
Ludovic Pinard ◽  
Joumana Toufaily ◽  
Tayssir Hamieh ◽  
T. Jean Daou

Hierarchical MOR-type zeolites were synthesized in the presence of hexadecyltrimethylammonium bromide (CTAB) as a porogen agent. XRD proved that the concentration of CTAB in the synthesis medium plays an essential role in forming pure hierarchical MOR-type material. Above a CTAB concentration of 0.04 mol·L−1, amorphous materials are observed. These hierarchical mordenite possess a higher porous volume compared to its counterpart conventional micrometer crystals. Nitrogen sorption showed the presence of mesoporosity for all mordenite samples synthesized in the presence of CTAB. The creation of mesopores due to the presence of CTAB in the synthesis medium does not occur at the expense of zeolite micropores. In addition, mesoporous volume and BET surface seem to increase upon the increase of CTAB concentration in the synthesis medium. The Si/Al ratio of the zeolite framework can be increased from 5.5 to 9.1 by halving the aluminum content present in the synthesis gel. These synthesized hierarchical MOR-type zeolites possess an improved catalytic activity for n-hexane cracking compared to large zeolite crystals obtained in the absence of CTAB.


Catalysts ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 313
Author(s):  
Heidy Ramirez-Mendoza ◽  
Mafalda Valdez Lancinha Pereira ◽  
Tom Van Gerven ◽  
Cécile Lutz ◽  
Ignacio Julian

The activity and selectivity of Mo/ZSM-5, benchmarking catalyst for the non-oxidative dehydroaromatization of methane, strongly depend on the cluster size, spatial distribution, and chemical environment of the Mo-based active sites. This study discloses the use of an ultrasound-assisted ion-exchange (US-IE) technique as an alternative Mo/ZSM-5 synthesis procedure in order to promote metal dispersion along the zeolite framework. For this purpose, a plate transducer (91.8 kHz) is employed to transmit the ultrasonic irradiation (US) into the ion-exchange reactor. The physico-chemical properties and catalytic activity of samples prepared under the said irradiation procedure and traditional impregnation (IWI) method are critically evaluated. Characterization results suggest that US neither affects the crystalline structure nor the particle size of the parent zeolite. However, US-IE promotes molybdenum species dispersion, avoids clustering at the external fresh zeolite surface and enhances molybdate species anchoring to the zeolite framework with respect to IWI. Despite the improved metal dispersion, the catalytic activity between catalysts synthesized by US-IE and IWI is comparable. This suggests that the sole initial dispersion enhancement does not suffice to boost the catalyst productivity and further actions such ZSM-5 support and catalyst pre-conditioning are required. Nevertheless, the successful implementation of US-IE and the resulting metal dispersion enhancement pave the way toward the application of this technique to the synthesis of other dispersed catalysts and materials of interest.


2016 ◽  
Vol 6 (11) ◽  
pp. 3727-3736 ◽  
Author(s):  
P. Cancino ◽  
A. Vega ◽  
Andrea Santiago-Portillo ◽  
Sergio Navalon ◽  
Mercedes Alvaro ◽  
...  

The synthesis and catalytic activity of a novel heteronuclear CuII and LaIII metal organic framework (MOF) having pyridinedicarboxylic acid (CuLa-MOF) is reported.


Processes ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 1006
Author(s):  
Valentina Zhukova ◽  
Paula Corte-Leon ◽  
Lorena González-Legarreta ◽  
Ahmed Talaat ◽  
Juan Maria Blanco ◽  
...  

The influence of post-processing conditions on the magnetic properties of amorphous and nanocrystalline microwires has been thoroughly analyzed, paying attention to the influence of magnetoelastic, induced and magnetocrystalline anisotropies on the hysteresis loops of Fe-, Ni-, and Co-rich microwires. We showed that magnetic properties of glass-coated microwires can be tuned by the selection of appropriate chemical composition and geometry in as-prepared state or further considerably modified by appropriate post-processing, which consists of either annealing or glass-coated removal. Furthermore, stress-annealing or Joule heating can further effectively modify the magnetic properties of amorphous magnetic microwires owing to induced magnetic anisotropy. Devitrification of microwires can be useful for either magnetic softening or magnetic hardening of the microwires. Depending on the chemical composition of the metallic nucleus and on structural features (grain size, precipitating phases), nanocrystalline microwires can exhibit either soft magnetic properties or semi-hard magnetic properties. We demonstrated that the microwires with coercivities from 1 A/m to 40 kA/m can be prepared.


Author(s):  
Н.И. Колобнев ◽  
◽  
Е.Н. Рябова ◽  
Л.Б. Хохлатова ◽  
М.С. Оглодков ◽  
...  

1994 ◽  
Vol 368 ◽  
Author(s):  
Mark R. Antonio ◽  
J. Malinsky ◽  
L. Soderholm

ABSTRACTNa+ in the Preyssler heteropolytungstate anion [NaP5W30O110]14− can be exchanged for a trivalent lanthanide ion. The potential significance of this new class of lanthanide heteropolyanions relates to their applications in catalysis science. This view follows from the fact that Keggin heteropolyanions and their free acids are used as heterogeneous solid catalysts and homogeneous solution catalysts. We describe synthetic conditions that lead to the incorporation of Ce3+ and Pr3+ within the Preyssler anion, and the coprecipitation of Ce3+ and the Preyssler anion. Initial studies indicate that the latter, coprecipitated, material deserves study for bifunctional catalytic activity.


Sign in / Sign up

Export Citation Format

Share Document