scholarly journals The SC-35 Splicing Factor Interacts with RNA Pol II and A-Type Lamin Depletion Weakens This Interaction

Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 297
Author(s):  
Soňa Legartová ◽  
Paolo Fagherazzi ◽  
Lenka Stixová ◽  
Aleš Kovařík ◽  
Ivan Raška ◽  
...  

The essential components of splicing are the splicing factors accumulated in nuclear speckles; thus, we studied how DNA damaging agents and A-type lamin depletion affect the properties of these regions, positive on the SC-35 protein. We observed that inhibitor of PARP (poly (ADP-ribose) polymerase), and more pronouncedly inhibitors of RNA polymerases, caused DNA damage and increased the SC-35 protein level. Interestingly, nuclear blebs, induced by PARP inhibitor and observed in A-type lamin-depleted or senescent cells, were positive on both the SC-35 protein and another component of the spliceosome, SRRM2. In the interphase cell nuclei, SC-35 interacted with the phosphorylated form of RNAP II, which was A-type lamin-dependent. In mitotic cells, especially in telophase, the SC-35 protein formed a well-visible ring in the cytoplasmic fraction and colocalized with β-catenin, associated with the plasma membrane. The antibody against the SRRM2 protein showed that nuclear speckles are already established in the cytoplasm of the late telophase and at the stage of early cytokinesis. In addition, we observed the occurrence of splicing factors in the nuclear blebs and micronuclei, which are also sites of both transcription and splicing. This conclusion supports the fact that splicing proceeds transcriptionally. According to our data, this process is A-type lamin-dependent. Lamin depletion also reduces the interaction between SC-35 and β-catenin in mitotic cells.

1996 ◽  
Vol 7 (10) ◽  
pp. 1559-1572 ◽  
Author(s):  
T Misteli ◽  
D L Spector

HeLa cell nuclei were permeabilized and reconstituted with nuclear extract to identify soluble nuclear factors which play a role in the organization of pre-mRNA splicing factors in the mammalian cell nucleus. Permeabilized nuclei reconstituted with nuclear extract were active in transcription and DNA replication and nuclear speckles containing pre-mRNA splicing factors were maintained over several hours independent of soluble nuclear components. The characteristic rounding up of nuclear speckles in response to inhibition of RNA polymerase II seen in vivo was reproduced in permeabilized cells and was strictly dependent on a catalytic activity present in the nuclear extract. By inhibitor titration experiments and sensitivity to inhibitor 2, this activity was identified as a member of the serine/threonine protein phosphatase 1 family (PP1). Interference with PP1 activity affected the distribution of pre-mRNA splicing factors in transcriptionally active, permeabilized cells, and excess PP1 activity caused increased dephosphorylation of SR proteins in nuclear speckles. These data show that the dynamic reorganization of the mammalian cell nucleus can be studied in permeabilized cells and that PP1 is involved in the rounding up of speckles as well as the overall organization of pre-mRNA splicing factors in the mammalian cell nucleus.


2000 ◽  
Vol 113 (21) ◽  
pp. 3761-3768 ◽  
Author(s):  
I. Jagiello ◽  
A. Van Eynde ◽  
V. Vulsteke ◽  
M. Beullens ◽  
A. Boudrez ◽  
...  

NIPP1 is a nuclear subunit of protein phosphatase-1 (PP1) that colocalizes with pre-mRNA splicing factors in speckles. We report here that the nuclear and subnuclear targeting of NIPP1, when expressed in HeLa cells or COS-1 cells as a fusion protein with the enhanced-green-fluorescent protein (EGFP), are mediated by distinct sequences. While NIPP1-EGFP can cross the nuclear membrane passively, the active transport to the nucleus is mediated by two independent nuclear localization signals in the central domain of NIPP1, which partially overlap with binding site(s) for PP1. Furthermore, the concentration of NIPP1-EGFP in the nuclear speckles requires the ‘ForkHead-Associated’ domain in the N terminus. This domain is also required for the nuclear retention of NIPP1 when active transport is blocked. Our data imply that the nuclear and subnuclear targeting of NIPP1 are controlled independently.


Cells ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1958
Author(s):  
Ella Alkalay ◽  
Chen Gam Ze Letova Refael ◽  
Irit Shoval ◽  
Noa Kinor ◽  
Ronit Sarid ◽  
...  

RNA-binding proteins, particularly splicing factors, localize to sub-nuclear domains termed nuclear speckles. During certain viral infections, as the nucleus fills up with replicating virus compartments, host cell chromatin distribution changes, ending up condensed at the nuclear periphery. In this study we wished to determine the fate of nucleoplasmic RNA-binding proteins and nuclear speckles during the lytic cycle of the Kaposi’s sarcoma associated herpesvirus (KSHV). We found that nuclear speckles became fewer and dramatically larger, localizing at the nuclear periphery, adjacent to the marginalized chromatin. Enlarged nuclear speckles contained splicing factors, whereas other proteins were nucleoplasmically dispersed. Polyadenylated RNA, typically found in nuclear speckles under regular conditions, was also found in foci separated from nuclear speckles in infected cells. Poly(A) foci did not contain lncRNAs known to colocalize with nuclear speckles but contained the poly(A)-binding protein PABPN1. Examination of the localization of spliced viral RNAs revealed that some spliced transcripts could be detected within the nuclear speckles. Since splicing is required for the maturation of certain KSHV transcripts, we suggest that the infected cell does not dismantle nuclear speckles but rearranges their components at the nuclear periphery to possibly serve in splicing and transport of viral RNAs into the cytoplasm.


Blood ◽  
1996 ◽  
Vol 87 (4) ◽  
pp. 1512-1519 ◽  
Author(s):  
LJ Coignet ◽  
E Schuuring ◽  
RE Kibbelaar ◽  
TK Raap ◽  
KK Kleiverda ◽  
...  

Rearrangements within the chromosome 11q13 region are frequent in hematologic malignancies. 50% of 75% of mantle cell lymphomas (MCLs) carry a translocation t(11;14) (q13;q32). Using Southern blot analysis, a BCL1 breakpoint can be detected in approximately 50% of MCLs. It is not known whether other MCLs harbor also breakpoints at 11q13. Breakpoints in this region not involved in t(11;14), are detected in chronic lymphocytic leukemia and acute myeloid leukemia. To detect and localize breakpoints at 11q13 more accurately, we have developed fluorescence in situ hybridization using two probe sets of differently labeled cosmids, symmetrically localized at either side of the major translocation cluster of BCL1. These probes span a region of 450 to 750 kb. We applied this assay to a series of hematologic malignancies with 11q13 abnormalities identified by classical cytogenetics. All four samples with a t(11;14) (q13;q32) showed dissociation of the differently colored signals in metaphase and interphase cells, thereby indicating a chromosomal break in the region defined by the probe sets. The frequency of abnormal metaphase and interphase cells was comparable with that observed in any of the 13 malignancies with other chromosomal 11q13 abnormalities, indicating that these chromosomal breaks occurred outside the 450- to 750-kb region covered by the probes. One patient showed triplication and one patient showed monoallelic loss of this region. The current data show that double-color fluorescence in situ hybridization is a simple and reliable method for detection of the t(11;14)(q13;q32) in interphase cell nuclei and that is can be used to distinguish this translocation from other 11q13 rearrangements in hematologic malignancies.


2008 ◽  
Vol 28 (9) ◽  
pp. 3045-3057 ◽  
Author(s):  
José Rino ◽  
Joana M. P. Desterro ◽  
Teresa R. Pacheco ◽  
Theodorus W. J. Gadella ◽  
Maria Carmo-Fonseca

ABSTRACT Splicing factors SF1 and U2AF associate cooperatively with pre-mRNA and play a crucial role in 3′ splice site recognition during early steps of spliceosome assembly. Formation of the active spliceosome subsequently displaces SF1 in a remodeling process that stabilizes the association of U2 snRNP with pre-mRNA. Fluorescence microscopy shows SF1 and U2AF distributed throughout the nucleoplasm, where transcription occurs, with additional concentration in nuclear speckles, where splicing factors accumulate when not engaged in splicing. Fluorescence recovery after photobleaching analysis in live cells shows that the mobilities of SF1 and the two subunits of U2AF (U2AF65 and U2AF35) are correlated with the abilities of these proteins to interact with each other. Direct binding of SF1 to U2AF65 was demonstrated by fluorescence resonance energy transfer in both the nucleoplasm and nuclear speckles. This interaction persisted after transcription inhibition, suggesting that SF1 associates with U2AF in a splicing-independent manner. We propose that SF1 and U2AF form extraspliceosomal complexes before and after taking part in the assembly of catalytic spliceosomes.


2006 ◽  
Vol 17 (3) ◽  
pp. 1239-1249 ◽  
Author(s):  
Joan C. Ritland Politz ◽  
Richard A. Tuft ◽  
Kannanganattu V. Prasanth ◽  
Nina Baudendistel ◽  
Kevin E. Fogarty ◽  
...  

Speckles are nuclear bodies that contain pre-mRNA splicing factors and polyadenylated RNA. Because nuclear poly(A) RNA consists of both mRNA transcripts and nucleus-restricted RNAs, we tested whether poly(A) RNA in speckles is dynamic or rather an immobile, perhaps structural, component. Fluorescein-labeled oligo(dT) was introduced into HeLa cells stably expressing a red fluorescent protein chimera of the splicing factor SC35 and allowed to hybridize. Fluorescence correlation spectroscopy (FCS) showed that the mobility of the tagged poly(A) RNA was virtually identical in both speckles and at random nucleoplasmic sites. This same result was observed in photoactivation-tracking studies in which caged fluorescein-labeled oligo(dT) was used as hybridization probe, and the rate of movement away from either a speckle or nucleoplasmic site was monitored using digital imaging microscopy after photoactivation. Furthermore, the tagged poly(A) RNA was observed to rapidly distribute throughout the entire nucleoplasm and other speckles, regardless of whether the tracking observations were initiated in a speckle or the nucleoplasm. Finally, in both FCS and photoactivation-tracking studies, a temperature reduction from 37 to 22°C had no discernible effect on the behavior of poly(A) RNA in either speckles or the nucleoplasm, strongly suggesting that its movement in and out of speckles does not require metabolic energy.


2020 ◽  
Author(s):  
Arun Prasath Damodaran ◽  
Olivia Gavard ◽  
Jean-Philippe Gagné ◽  
Malgorzata Ewa Rogalska ◽  
Estefania Mancini ◽  
...  

ABSTRACTAurora-A kinase is well known to regulate progression through mitosis. However, the kinase also performs additional functions that could explain the failure of its inhibitors to be effective in cancer treatments. To identify these functions, we applied a proteomics approach to search for interactors of Aurora-A. We found a large number of proteins involved in pre-mRNA splicing, strongly suggesting an important role for Aurora-A in this biological process. Consistently, we first report the subcellular localization of Aurora-A in nuclear speckles, the storehouse of splicing proteins. We also demonstrate direct interaction of Aurora-A with RRM domain-containing splicing factors such as hnRNP and SR proteins and their phosphorylation in vitro. Further, RNA-sequencing analysis following pharmacological inhibition of Aurora-A resulted in alternative splicing changes corresponding to 505 genes, including genes with functions regulated by Aurora-A kinase. Finally, we report enrichment of RNA motifs within the alternatively spliced regions affected by Aurora-A kinase inhibition which are bound by Aurora-A interacting splicing factors, suggesting that Aurora-A regulates alternative splicing by modulating the activity of these interacting splicing factors. Overall our work identified Aurora-A as a novel splicing kinase and for the first time, describes a broad role of Aurora-A in regulating alternative splicing.


Sign in / Sign up

Export Citation Format

Share Document