scholarly journals Stem Cells and the Endometrium: From the Discovery of Adult Stem Cells to Pre-Clinical Models

Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 595
Author(s):  
Lucía de de Miguel-Gómez ◽  
Sara López-Martínez ◽  
Emilio Francés-Herrero ◽  
Adolfo Rodríguez-Eguren ◽  
Antonio Pellicer ◽  
...  

Adult stem cells (ASCs) were long suspected to exist in the endometrium. Indeed, several types of endometrial ASCs were identified in rodents and humans through diverse isolation and characterization techniques. Putative stromal and epithelial stem cell niches were identified in murine models using label-retention techniques. In humans, functional methods (clonogenicity, long-term culture, and multi-lineage differentiation assays) and stem cell markers (CD146, SUSD2/W5C5, LGR5, NTPDase2, SSEA-1, or N-cadherin) facilitated the identification of three main types of endogenous endometrial ASCs: stromal, epithelial progenitor, and endothelial stem cells. Further, exogenous populations of stem cells derived from bone marrow may act as key effectors of the endometrial ASC niche. These findings are promoting the development of stem cell therapies for endometrial pathologies, with an evolution towards paracrine approaches. At the same time, promising therapeutic alternatives based on bioengineering have been proposed.

1996 ◽  
Vol 91 (2) ◽  
pp. 141-146 ◽  
Author(s):  
P. H. Jones

1. The keratinocytes in human epidermis are constantly turned over and replaced by a population of stem cells located in the basal epidermal layer. Until recently there were no markers allowing the isolation of viable epidermal stem cells. However, it has now been shown that epidermal stem cells can be isolated both in vitro and direct from the epidermis as they express high levels of functional β1 integrin family receptors for extracellular matrix proteins. 2. The evidence for integrins as stem cell markers and the insights that have been gained into stem cell behaviour are reviewed.


Endocrinology ◽  
2008 ◽  
Vol 149 (9) ◽  
pp. 4303-4306 ◽  
Author(s):  
Gail P. Risbridger ◽  
Renea A. Taylor

The isolation and characterization of prostatic stem cells has received significant attention in the last few years based on the belief that aberrant regulation of adult stem cells leads to prostate disease including cancer. The nature of the perturbations in stem cell regulation remains largely unknown. Although adult stem cells are can be governed by autonomous regulatory mechanisms, the stromal niche environment also provides essential cues to direct directing differentiation decisions and can lead to aberrant proliferation and/or differentiation. Elegant tissue recombination experiments, pioneered by Gerald Cunha and colleagues, provided evidence that quiescent epithelial tissues containing adult stem cells were capable of altered differentiation in response to inductive and instructive mesenchyme. In more recent times, it has been demonstrated that embryonic mesenchyme is sufficiently powerful to direct the differentiation of embryonic stem cells into mature prostate or bladder. In addition, prostatic tumor stroma provides another unique niche or microenvironment for stem cell differentiation that is distinct to normal stroma. This review highlights the importance of the appropriate selection of the stromal cell niche for tissue regeneration and implies plasticity of adult stem cells that is dictated by the tissue microenvironment.


Hematology ◽  
2003 ◽  
Vol 2003 (1) ◽  
pp. 398-418 ◽  
Author(s):  
George Q. Daley ◽  
Margaret A. Goodell ◽  
Evan Y. Snyder

Abstract Studies of the regenerating hematopoietic system have led to the definition of many of the fundamental principles of stem cell biology. Therapies based on a range of tissue stem cells have been widely touted as a new treatment modality, presaging an emerging new specialty called regenerative medicine that promises to harness stem cells from embryonic and somatic sources to provide replacement cell therapies for genetic, malignant, and degenerative conditions. Insights borne from stem cell biology also portend development of protein and small molecule therapeutics that act on endogenous stem cells to promote repair and regeneration. Much of the newfound enthusiasm for regenerative medicine stems from the hope that advances in the laboratory will be followed soon thereafter by breakthrough treatments in the clinic. But how does one sort through the hype to judge the true promise? Are stem cell biologists and the media building expectations that cannot be met? Which diseases can be treated, and when can we expect success? In this review, we outline the realms of investigation that are capturing the most attention, and consider the current state of scientific understanding and controversy regarding the properties of embryonic and somatic (adult) stem cells. Our objective is to provide a framework for appreciating the promise while at the same time understanding the challenges behind translating fundamental stem cell biology into novel clinical therapies.


2014 ◽  
Vol 7 (2) ◽  
pp. 118-126 ◽  
Author(s):  
Masoud Maleki ◽  
Farideh Ghanbarvand ◽  
Mohammad Reza Behvarz ◽  
Mehri Ejtemaei ◽  
Elham Ghadirkhomi

2019 ◽  
Vol 1 (1) ◽  

Stem cells have the ability to go through various cell divisions and also maintain undifferentiated state. Stem cells are Embryonic (Pluripotent) and adult stem cells. Pluripotent stem cells give rise to all tissues such as ectoderm, mesoderm and endoderm. Embryonic stem cells isolated from inner cell mass of embryo blastocyst. Adult stem cells are also undifferentiated cells present in adult organisms and repair the tissue when damaged occurs but number in less. Adult stem cells are present in bone marrow, adipose tissue, blood and juvenile state umbilical cord and tissue of specific origin like liver, heart, intestine and neural tissue. Embryonic stem cells from blastocyst have the ethical problems and tumorogenecity. These can be identified by flow cytometry. There are wide range of stem cell markers which are useful in identifying them. Most of the pluripotent cell markers are common with tumor cell markers which throws a challenge for certainty.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Zijian Xu ◽  
Wenjie Wang ◽  
Kaiju Jiang ◽  
Zhou Yu ◽  
Huanwei Huang ◽  
...  

Long-term adult stem cells sustain tissue regeneration throughout the lifetime of an organism. They were hypothesized to originate from embryonic progenitor cells that acquire long-term self-renewal ability and multipotency at the end of organogenesis. The process through which this is achieved often remains unclear. Here, we discovered that long-term hair follicle stem cells arise from embryonic progenitor cells occupying a niche location that is defined by attenuated Wnt/β-catenin signaling. Hair follicle initiation is marked by placode formation, which depends on the activation of Wnt/β-catenin signaling. Soon afterwards, a region with attenuated Wnt/β-catenin signaling emerges in the upper follicle. Embryonic progenitor cells residing in this region gain expression of adult stem cell markers and become definitive long-term hair follicle stem cells at the end of organogenesis. Attenuation of Wnt/β-catenin signaling is a prerequisite for hair follicle stem cell specification because it suppresses Sox9, which is required for stem cell formation.


2005 ◽  
Vol 17 (9) ◽  
pp. 67
Author(s):  
P. J. Verma ◽  
K. Upton ◽  
H. Mc Connell ◽  
I. Vassiliev

The isolation of stem cells has become an area of increasing interest due to their potential uses in animal reproduction, somatic cell nuclear transfer and cell therapies. The most attractive options are the isolation of stem cells from individual embryos or adult somatic tissues. In addition, for cell therapy, the use of autologous stem cells is considered to have an advantage over heterologous cell based therapies in that immune rejection issues would be circumvented. Here we report on our attempts to isolate stem cells from both these sources in a bovine model. Bovine ES-like (bES) cells were successfully isolated from embryos and maintained in vitro for up to six passages. These cells retained the morphology characteristic of bES cells: small cytoplasmic/nuclear ratio, nuclei with multiple nucleoli, and multiple lipid inclusions in cytoplasm. bES cell colonies grew as monolayers, as islands of ES cells surrounded by trophectoderm (TE) cells. Immunohistochemical detection of SSEA-1 and SSEA-4 demonstrated expression of these markers in bES cells but not in TE cells. Further, the expression of the pluripotent markers Oct-4, Rex-1 and SSEA-1 by RT-PCR was also detected in bES cells but not in TE cells. On spontaneous differentiation, these cells were able to form a variety of cell types including beating muscle with the cells displaying a propensity to differentiate in a manner reminiscent of human ES cells. (2) We also report the isolation of putative stem cells from adult bovine skin biopsies, which express the stem cell markers Oct-4 and SSEA-1 analysed by RT-PCR and are capable of forming 3-dimensional colonies. These cells are obtained from a skin biopsy, a relatively non-invasive technique that makes them useful as donors for therapeutic applications. In summary, we have identified populations of stem cells from embryonic and adult bovine tissues, which are readily isolated. Further characterization of the differentiation potential of these cells is needed to identify the suitability of this population for use in autologous stem cell therapies.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Johannes Völker ◽  
Jonas Engert ◽  
Christine Völker ◽  
Linda Bieniussa ◽  
Philipp Schendzielorz ◽  
...  

The inferior colliculus (IC) is a nucleus of the auditory pathway and its fourth relay station. It integrates afferent information from the superior olivary complex and the cochlear nucleus. To date, no causal therapeutic options are known for damaged neuronal structures in this area. Regenerative medicine offers a potential approach to causally treating hearing impairment. After neural stem cells had been identified in certain areas of the auditory pathway, the question arouses, whether the IC also has a neurogenic potential. Cells from the IC of postnatal day 6 rats were extracted and cultured as neurospheres. Cells in the neurospheres showed mitotic activity and positive stain of neural stem cell markers (Nestin, DCX, Atoh1, and Sox-2). In addition, single cells were differentiated into neuronal and glial cells shown by the markers β-III-tubulin, GFAP, and MBP. In summary, basic stem cell criteria could be detected and characterized in cells isolated from the IC of the rat. These findings will lead to a better understanding of the development of the auditory pathway and may also be relevant for identifying causal therapeutic approaches in the future.


2021 ◽  
Vol 8 (2) ◽  
pp. 24
Author(s):  
Min-Soo Seo ◽  
Kyung-Ku Kang ◽  
Se-Kyung Oh ◽  
Soo-Eun Sung ◽  
Kil-Soo Kim ◽  
...  

Wharton’s jelly is a well-known mesenchymal stem cell source in many species, including humans. However, there have been no reports confirming the presence of mesenchymal stem cells in Wharton’s jelly in cats. The purpose of this study was to isolate mesenchymal stem cells (MSCs) from the Wharton’s jelly of cats and to characterize stem cells. In this study, feline Wharton’s jelly-derived mesenchymal stem cells (fWJ-MSCs) were isolated and successfully cultured. fWJ-MSCs were maintained and the proliferative potential was measured by cumulative population doubling level (CPDL) test, scratch test, and colony forming unit (CFU) test. Stem cell marker, karyotyping and immunophenotyping analysis by flow cytometry showed that fWJ-MSCs possessed characteristic mesenchymal stem cell markers. To confirm the differentiation potential, we performed osteogenic, adipogenic and chondrogenic induction under each differentiation condition. fWJ-MSCs has the ability to differentiate into multiple lineages, including osteogenic, adipogenic and chondrogenic differentiation. This study shows that Wharton’s jelly of cat can be a good source of mesenchymal stem cells. In addition, fWJ-MSCs may be useful for stem cell-based therapeutic applications in feline medicine.


Sign in / Sign up

Export Citation Format

Share Document