scholarly journals Rab27a-Dependent Paracrine Communication Controls Dendritic Spine Formation and Sensory Responses in the Barrel Cortex

Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 622
Author(s):  
Longbo Zhang ◽  
Xiaobing Zhang ◽  
Lawrence S. Hsieh ◽  
Tiffany V. Lin ◽  
Angélique Bordey

Rab27a is an evolutionarily conserved small GTPase that regulates vesicle trafficking, and copy number variants of RAB27a are associated with increased risk of autism. However, the function of Rab27a on brain development is unknown. Here, we identified a form of paracrine communication that regulates spine development between distinct populations of developing cortical neurons. In the developing somatosensory cortex of mice, we show that decreasing Rab27a levels in late-born pyramidal neurons destined for layer (L) 2/3 had no cell-autonomous effect on their synaptic integration but increased excitatory synaptic transmission onto L4 neurons that receive somatosensory information. This effect resulted in an increased number of L4 neurons activated by whisker stimulation in juvenile mice. In addition, we found that Rab27a, the level of which decreases as neurons mature, regulates the release of small extracellular vesicles (sEVs) in developing neurons in vitro and decreasing Rab27a levels led to the accumulation of CD63-positive vesicular compartments in L2/3 neurons in vivo. Together, our study reveals that Rab27a-mediated paracrine communication regulates the development of synaptic connectivity, ultimately tuning responses to sensory stimulation, possibly via controlling the release of sEVs.

2021 ◽  
Vol 118 (32) ◽  
pp. e2018850118
Author(s):  
Hiroo Takahashi ◽  
Ryo Asahina ◽  
Masayuki Fujioka ◽  
Takeshi K. Matsui ◽  
Shigeki Kato ◽  
...  

Ischemic stroke, which results in loss of neurological function, initiates a complex cascade of pathological events in the brain, largely driven by excitotoxic Ca2+ influx in neurons. This leads to cortical spreading depolarization, which induces expression of genes involved in both neuronal death and survival; yet, the functions of these genes remain poorly understood. Here, we profiled gene expression changes that are common to ischemia (modeled by middle cerebral artery occlusion [MCAO]) and to experience-dependent activation (modeled by exposure to an enriched environment [EE]), which also induces Ca2+ transients that trigger transcriptional programs. We found that the activity-dependent transcription factor Npas4 was up-regulated under MCAO and EE conditions and that transient activation of cortical neurons in the healthy brain by the EE decreased cell death after stroke. Furthermore, both MCAO in vivo and oxygen-glucose deprivation in vitro revealed that Npas4 is necessary and sufficient for neuroprotection. We also found that this protection involves the inhibition of L-type voltage-gated Ca2+ channels (VGCCs). Next, our systematic search for Npas4-downstream genes identified Gem, which encodes a Ras-related small GTPase that mediates neuroprotective effects of Npas4. Gem suppresses the membrane localization of L-type VGCCs to inhibit excess Ca2+ influx, thereby protecting neurons from excitotoxic death after in vitro and in vivo ischemia. Collectively, our findings indicate that Gem expression via Npas4 is necessary and sufficient to promote neuroprotection in the injured brain. Importantly, Gem is also induced in human cerebral organoids cultured under an ischemic condition, revealing Gem as a new target for drug discovery.


2003 ◽  
Vol 89 (2) ◽  
pp. 909-921 ◽  
Author(s):  
Roger D. Traub ◽  
Eberhard H. Buhl ◽  
Tengis Gloveli ◽  
Miles A. Whittington

Fast rhythmic bursting (or “chattering”) is a firing pattern exhibited by selected neocortical neurons in cats in vivo and in slices of adult ferret and cat brain. Fast rhythmic bursting (FRB) has been recorded in certain superficial and deep principal neurons and in aspiny presumed local circuit neurons; it can be evoked by depolarizing currents or by sensory stimulation and has been proposed to depend on a persistent g Na that causes spike depolarizing afterpotentials. We constructed a multicompartment 11-conductance model of a layer 2/3 pyramidal neuron, containing apical dendritic calcium-mediated electrogenesis; the model can switch between rhythmic spiking (RS) and FRB modes of firing, with various parameter changes. FRB in this model is favored by enhancing persistent g Na and also by measures that reduce [Ca2+]i or that reduce the conductance of g K(C) (a fast voltage- and Ca2+-dependent conductance). Axonal excitability plays a critical role in generating fast bursts in the model. In vitro experiments in rat layer 2/3 neurons confirmed (as shown previously by others) that RS firing could be switched to fast rhythmic bursting, either by buffering [Ca2+]i or by enhancing persistent g Na. In addition, our experiments confirmed the model prediction that reducing g KC (with iberiotoxin) would favor FRB. During the bursts, fast prepotentials (spikelets) could occur that did not originate in apical dendrites and that appear to derive from the axon. We suggest that modulator-induced regulation of [Ca2+] dynamics or of BK channel conductance, for example via protein kinase A, could play a role in determining the firing pattern of neocortical neurons; specifically, such modulation could play a role in regulating whether neurons respond to strong stimulation with fast rhythmic bursts.


2006 ◽  
Vol 96 (6) ◽  
pp. 3448-3464 ◽  
Author(s):  
Giancarlo La Camera ◽  
Alexander Rauch ◽  
David Thurbon ◽  
Hans-R. Lüscher ◽  
Walter Senn ◽  
...  

Neural dynamic processes correlated over several time scales are found in vivo, in stimulus-evoked as well as spontaneous activity, and are thought to affect the way sensory stimulation is processed. Despite their potential computational consequences, a systematic description of the presence of multiple time scales in single cortical neurons is lacking. In this study, we injected fast spiking and pyramidal (PYR) neurons in vitro with long-lasting episodes of step-like and noisy, in-vivo-like current. Several processes shaped the time course of the instantaneous spike frequency, which could be reduced to a small number (1–4) of phenomenological mechanisms, either reducing (adapting) or increasing (facilitating) the neuron's firing rate over time. The different adaptation/facilitation processes cover a wide range of time scales, ranging from initial adaptation (<10 ms, PYR neurons only), to fast adaptation (<300 ms), early facilitation (0.5–1 s, PYR only), and slow (or late) adaptation (order of seconds). These processes are characterized by broad distributions of their magnitudes and time constants across cells, showing that multiple time scales are at play in cortical neurons, even in response to stationary stimuli and in the presence of input fluctuations. These processes might be part of a cascade of processes responsible for the power-law behavior of adaptation observed in several preparations, and may have far-reaching computational consequences that have been recently described.


2021 ◽  
Vol 5 (2) ◽  
pp. 36-41
Author(s):  
Maibouge Tanko Mahamane Salissou ◽  
Daud Gharib Zainab ◽  
Susan. L.Mutambu ◽  
Mahaman Yacoubou Abdoul Razak ◽  
Fadzai Mukora Mutseyekwa ◽  
...  

Ovarian tumor is the third leading common gynecologic tumor and the common leading cause of death in gynecological cancers to the entire global and studies suggested that Rab25 is insinuated in the pathological process of ovarian cancer. Despite the availability of biomarkers for ovarian cancer detection, there are no specific markers that enable the early detection of ovarian cancers which open an avenue to Rab25 to be review. A number of genes and proteins have been reported to be involved in the pathogenesis of ovarian cancers. Of them, Ras-related protein 25 (Rab25) is suggested to be linked to increased risk of ovarian cancer development. Rab25, an intracellular transport protein, belongs to the Rab small GTPase family and regulates various aspects of internalized membrane protein recycling and trafficking occurring inside the cells to the cell membrane. It is known to be involved in cell proliferation, and prevents apoptosis and invasion in ovarian cancer. Rab25 is highly found in epithelial cells and the expression of Rab25 proteins has been implicated to be ubiquitous. Upregulation of Rab25 has also been strongly shown to intensify the cancer cell proliferation and to prevent apoptosis in vitro and in vivo .Here in we will review the past and current studies implicating Rab 25 as potential biomarker in ovarian cancer in addition to pathogenesis  


2020 ◽  
Author(s):  
Whitney E. Heavner ◽  
Haley Speed ◽  
Jonathan D. Lautz ◽  
Edward P. Gniffke ◽  
Karen B. Immendorf ◽  
...  

AbstractNeurons maintain constant levels of excitability using homeostatic scaling, which adjusts relative synaptic strength in response to large changes in overall activity. It is still unknown how homeostatic scaling affects network-level protein interactions in the synapse despite extensive reporting of individual scaling-associated transcriptomic and proteomic changes. Here, we assessed a glutamatergic synapse protein interaction network (PIN) composed of 380 binary interactions among 21 protein members to identify protein complexes altered by synaptic scaling in vitro and in vivo. In cultured cortical neurons, we observed widespread bidirectional PIN alterations during up- and downscaling that reflected rapid glutamate receptor shuttling via synaptic scaffold remodeling. Sensory deprivation of the barrel cortex caused a PIN response that reflected changes in mGluR tone and NMDAR-dependent metaplasticity, consistent with emerging models of homeostatic plasticity in the barrel cortex that restore excitatory/inhibitory balance. Mice lacking Homer1 or Shank3B did not undergo normal PIN rearrangements, suggesting that these Autism Spectrum Disorder (ASD)-linked proteins serve as structural hubs for synaptic homeostasis. Our approach demonstrates how changes in the protein content of synapses during homeostatic plasticity translate into functional PIN alterations that mediate changes in neuron excitability.


1998 ◽  
Vol 79 (3) ◽  
pp. 1450-1460 ◽  
Author(s):  
Denis Paré ◽  
Eric Shink ◽  
Hélène Gaudreau ◽  
Alain Destexhe ◽  
Eric J. Lang

Paré, Denis, Eric Shink, Hélène Gaudreau, Alain Destexhe, and Eric J. Lang. Impact of spontaneous synaptic activity on the resting properties of cat neocortical pyramidal neurons in vivo. J. Neurophysiol. 79: 1450–1460, 1998. The frequency of spontaneous synaptic events in vitro is probably lower than in vivo because of the reduced synaptic connectivity present in cortical slices and the lower temperature used during in vitro experiments. Because this reduction in background synaptic activity could modify the integrative properties of cortical neurons, we compared the impact of spontaneous synaptic events on the resting properties of intracellularly recorded pyramidal neurons in vivo and in vitro by blocking synaptic transmission with tetrodotoxin (TTX). The amount of synaptic activity was much lower in brain slices (at 34°C), as the standard deviation of the intracellular signal was 10–17 times lower in vitro than in vivo. Input resistances ( R ins) measured in vivo during relatively quiescent epochs (“control R ins”) could be reduced by up to 70% during periods of intense spontaneous activity. Further, the control R ins were increased by ∼30–70% after TTX application in vivo, approaching in vitro values. In contrast, TTX produced negligible R in changes in vitro (∼4%). These results indicate that, compared with the in vitro situation, the background synaptic activity present in intact networks dramatically reduces the electrical compactness of cortical neurons and modifies their integrative properties. The impact of the spontaneous synaptic bombardment should be taken into account when extrapolating in vitro findings to the intact brain.


2012 ◽  
Vol 108 (6) ◽  
pp. 1656-1668 ◽  
Author(s):  
Angel Nuñez ◽  
Soledad Domínguez ◽  
Washington Buño ◽  
David Fernández de Sevilla

Neocortical cholinergic activity plays a fundamental role in sensory processing and cognitive functions, but the underlying cellular mechanisms are largely unknown. We analyzed the effects of acetylcholine (ACh) on synaptic transmission and cell excitability in rat “barrel cortex” layer V (L5) pyramidal neurons in vitro. ACh through nicotinic and M1 muscarinic receptors enhanced excitatory postsynaptic currents and through nicotinic and M2 muscarinic receptors reduced inhibitory postsynaptic currents. These effects increased excitability and contributed to the generation of Ca2+ spikes and bursts of action potentials (APs) when inputs in basal dendrites were stimulated. Ca2+ spikes were mediated by activation of NMDA receptors (NMDARs) and L-type voltage-gated Ca2+ channels. Additionally, we demonstrate in vivo that basal forebrain stimulation induced an atropine-sensitive increase of L5 AP responses evoked by vibrissa deflection, an effect mainly due to the enhancement of an NMDAR component. Therefore, ACh modified the excitatory/inhibitory balance and switched L5 pyramidal neurons to a bursting mode that caused a potent and sustained response enhancement with possible fundamental consequences for the function of the barrel cortex.


2016 ◽  
Vol 2 (12) ◽  
pp. e1600889 ◽  
Author(s):  
Seung Woo Lee ◽  
Florian Fallegger ◽  
Bernard D. F. Casse ◽  
Shelley I. Fried

Neural prostheses that stimulate the neocortex have the potential to treat a wide range of neurological disorders. However, the efficacy of electrode-based implants remains limited, with persistent challenges that include an inability to create precise patterns of neural activity as well as difficulties in maintaining response consistency over time. These problems arise from fundamental limitations of electrodes as well as their susceptibility to implantation and have proven difficult to overcome. Magnetic stimulation can address many of these limitations, but coils small enough to be implanted into the cortex were not thought strong enough to activate neurons. We describe a new microcoil design and demonstrate its effectiveness for both activating cortical neurons and driving behavioral responses. The stimulation of cortical pyramidal neurons in brain slices in vitro was reliable and could be confined to spatially narrow regions (<60 μm). The spatially asymmetric fields arising from the coil helped to avoid the simultaneous activation of passing axons. In vivo implantation was safe and resulted in consistent and predictable behavioral responses. The high permeability of magnetic fields to biological substances may yield another important advantage because it suggests that encapsulation and other adverse effects of implantation will not diminish coil performance over time, as happens to electrodes. These findings suggest that a coil-based implant might be a useful alternative to existing electrode-based devices. The enhanced selectivity of microcoil-based magnetic stimulation will be especially useful for visual prostheses as well as for many brain-computer interface applications that require precise activation of the cortex.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yan Zhou ◽  
Tao Tao ◽  
Guangjie Liu ◽  
Xuan Gao ◽  
Yongyue Gao ◽  
...  

AbstractNeuronal apoptosis has an important role in early brain injury (EBI) following subarachnoid hemorrhage (SAH). TRAF3 was reported as a promising therapeutic target for stroke management, which covered several neuronal apoptosis signaling cascades. Hence, the present study is aimed to determine whether downregulation of TRAF3 could be neuroprotective in SAH-induced EBI. An in vivo SAH model in mice was established by endovascular perforation. Meanwhile, primary cultured cortical neurons of mice treated with oxygen hemoglobin were applied to mimic SAH in vitro. Our results demonstrated that TRAF3 protein expression increased and expressed in neurons both in vivo and in vitro SAH models. TRAF3 siRNA reversed neuronal loss and improved neurological deficits in SAH mice, and reduced cell death in SAH primary neurons. Mechanistically, we found that TRAF3 directly binds to TAK1 and potentiates phosphorylation and activation of TAK1, which further enhances the activation of NF-κB and MAPKs pathways to induce neuronal apoptosis. Importantly, TRAF3 expression was elevated following SAH in human brain tissue and was mainly expressed in neurons. Taken together, our study demonstrates that TRAF3 is an upstream regulator of MAPKs and NF-κB pathways in SAH-induced EBI via its interaction with and activation of TAK1. Furthermore, the TRAF3 may serve as a novel therapeutic target in SAH-induced EBI.


Sign in / Sign up

Export Citation Format

Share Document