scholarly journals Novel Roles of SH2 and SH3 Domains in Lipid Binding

Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1191
Author(s):  
Szabolcs Sipeki ◽  
Kitti Koprivanacz ◽  
Tamás Takács ◽  
Anita Kurilla ◽  
Loretta László ◽  
...  

Signal transduction, the ability of cells to perceive information from the surroundings and alter behavior in response, is an essential property of life. Studies on tyrosine kinase action fundamentally changed our concept of cellular regulation. The induced assembly of subcellular hubs via the recognition of local protein or lipid modifications by modular protein interactions is now a central paradigm in signaling. Such molecular interactions are mediated by specific protein interaction domains. The first such domain identified was the SH2 domain, which was postulated to be a reader capable of finding and binding protein partners displaying phosphorylated tyrosine side chains. The SH3 domain was found to be involved in the formation of stable protein sub-complexes by constitutively attaching to proline-rich surfaces on its binding partners. The SH2 and SH3 domains have thus served as the prototypes for a diverse collection of interaction domains that recognize not only proteins but also lipids, nucleic acids, and small molecules. It has also been found that particular SH2 and SH3 domains themselves might also bind to and rely on lipids to modulate complex assembly. Some lipid-binding properties of SH2 and SH3 domains are reviewed here.

1992 ◽  
Vol 12 (4) ◽  
pp. 1835-1845 ◽  
Author(s):  
C Seidel-Dugan ◽  
B E Meyer ◽  
S M Thomas ◽  
J S Brugge

The amino-termina, noncatalytic half of Src contains two domains, designated the Src homology 2 (SH2) and Src homology 3 (SH3) domains, that are highly conserved among members of the Src family of tyrosine kinases. The SH2 domain (which can be further divided into the B and C homology boxes) and the SH3 domain (also referred to as the A box) are also found in several proteins otherwise unrelated to protein tyrosine kinases. It is believed that these domains are important for directing specific protein-protein interactions necessary for the proper functioning of Src. To determine the importance of the SH2 and SH3 domains in regulating the functions of c-Src, we evaluated mutants of c-Src lacking the A box (residues 88 to 137), the B box (residues 148 to 187) or the C box (residues 220 to 231). Each of these deletions caused a 14- to 30-fold increase in the in vitro level of kinase activity of c-Src. Chicken embryo fibroblasts expressing the deletion mutants displayed a transformed cell morphology, formed colonies in soft agar, and contained elevated levels of cellular phosphotyrosine-containing proteins. Src substrates p36, p85, p120, p125, the GTPase-activating protein (GAP), and several GAP-associated proteins were phosphorylated on tyrosine in cells expressing the A, B, or C box deletion mutant. p110 was highly phosphorylated in cells expressing the C box mutant, was weakly phosphorylated in cells expressing the B box mutant, and was not phosphorylated in cells expressing the A box mutant. Expression of the mutant proteins caused a reorganization of the actin cytoskeleton similar to that seen in v-Src-transformed cells. In addition, deletion of the A, B, or C box did not diminish the transforming or enzymatic activity of an activated variant of c-Src, E378G. These data indicate that deletion of the A, B, or C homology box causes an activation of the catalytic and transforming potential of c-Src and that while these mutations caused subtle differences in substrate phosphorylation, the homology boxes are not required for many of the phenotypic changes associated with transformation by Src.


1992 ◽  
Vol 12 (4) ◽  
pp. 1835-1845
Author(s):  
C Seidel-Dugan ◽  
B E Meyer ◽  
S M Thomas ◽  
J S Brugge

The amino-termina, noncatalytic half of Src contains two domains, designated the Src homology 2 (SH2) and Src homology 3 (SH3) domains, that are highly conserved among members of the Src family of tyrosine kinases. The SH2 domain (which can be further divided into the B and C homology boxes) and the SH3 domain (also referred to as the A box) are also found in several proteins otherwise unrelated to protein tyrosine kinases. It is believed that these domains are important for directing specific protein-protein interactions necessary for the proper functioning of Src. To determine the importance of the SH2 and SH3 domains in regulating the functions of c-Src, we evaluated mutants of c-Src lacking the A box (residues 88 to 137), the B box (residues 148 to 187) or the C box (residues 220 to 231). Each of these deletions caused a 14- to 30-fold increase in the in vitro level of kinase activity of c-Src. Chicken embryo fibroblasts expressing the deletion mutants displayed a transformed cell morphology, formed colonies in soft agar, and contained elevated levels of cellular phosphotyrosine-containing proteins. Src substrates p36, p85, p120, p125, the GTPase-activating protein (GAP), and several GAP-associated proteins were phosphorylated on tyrosine in cells expressing the A, B, or C box deletion mutant. p110 was highly phosphorylated in cells expressing the C box mutant, was weakly phosphorylated in cells expressing the B box mutant, and was not phosphorylated in cells expressing the A box mutant. Expression of the mutant proteins caused a reorganization of the actin cytoskeleton similar to that seen in v-Src-transformed cells. In addition, deletion of the A, B, or C box did not diminish the transforming or enzymatic activity of an activated variant of c-Src, E378G. These data indicate that deletion of the A, B, or C homology box causes an activation of the catalytic and transforming potential of c-Src and that while these mutations caused subtle differences in substrate phosphorylation, the homology boxes are not required for many of the phenotypic changes associated with transformation by Src.


2018 ◽  
Vol 25 (1) ◽  
pp. 5-21 ◽  
Author(s):  
Ylenia Cau ◽  
Daniela Valensin ◽  
Mattia Mori ◽  
Sara Draghi ◽  
Maurizio Botta

14-3-3 is a class of proteins able to interact with a multitude of targets by establishing protein-protein interactions (PPIs). They are usually found in all eukaryotes with a conserved secondary structure and high sequence homology among species. 14-3-3 proteins are involved in many physiological and pathological cellular processes either by triggering or interfering with the activity of specific protein partners. In the last years, the scientific community has collected many evidences on the role played by seven human 14-3-3 isoforms in cancer or neurodegenerative diseases. Indeed, these proteins regulate the molecular mechanisms associated to these diseases by interacting with (i) oncogenic and (ii) pro-apoptotic proteins and (iii) with proteins involved in Parkinson and Alzheimer diseases. The discovery of small molecule modulators of 14-3-3 PPIs could facilitate complete understanding of the physiological role of these proteins, and might offer valuable therapeutic approaches for these critical pathological states.


2018 ◽  
Vol 115 (12) ◽  
pp. 2976-2981 ◽  
Author(s):  
John W. Patrick ◽  
Christopher D. Boone ◽  
Wen Liu ◽  
Gloria M. Conover ◽  
Yang Liu ◽  
...  

Membrane proteins interact with a myriad of lipid species in the biological membrane, leading to a bewildering number of possible protein−lipid assemblies. Despite this inherent complexity, the identification of specific protein−lipid interactions and the crucial role of lipids in the folding, structure, and function of membrane proteins is emerging from an increasing number of reports. Fundamental questions remain, however, regarding the ability of specific lipid binding events to membrane proteins to alter remote binding sites for lipids of a different type, a property referred to as allostery [Monod J, Wyman J, Changeux JP (1965)J Mol Biol12:88–118]. Here, we use native mass spectrometry to determine the allosteric nature of heterogeneous lipid binding events to membrane proteins. We monitored individual lipid binding events to the ammonia channel (AmtB) fromEscherichia coli, enabling determination of their equilibrium binding constants. We found that different lipid pairs display a range of allosteric modulation. In particular, the binding of phosphatidylethanolamine and cardiolipin-like molecules to AmtB exhibited the largest degree of allosteric modulation, inspiring us to determine the cocrystal structure of AmtB in this lipid environment. The 2.45-Å resolution structure reveals a cardiolipin-like molecule bound to each subunit of the trimeric complex. Mutation of a single residue in AmtB abolishes the positive allosteric modulation observed for binding phosphatidylethanolamine and cardiolipin-like molecules. Our results demonstrate that specific lipid−protein interactions can act as allosteric modulators for the binding of different lipid types to integral membrane proteins.


2020 ◽  
Author(s):  
Kaela S. Singleton ◽  
Pablo Silva-Rodriguez ◽  
Elena M. Silva

AbstractSox11, a member of the SoxC family of transcription factors, has distinct functions at different times in neural development. Studies in mouse, frog, chick and zebrafish show that Sox11 promotes neural fate, neural differentiation, and neuron maturation in the central nervous system. These diverse roles are controlled in part by spatial and temporal-specific protein interactions. However, the partner proteins and Sox11-interaction domains underlying these diverse functions are not well defined. Here, we identify partner proteins and the domains of Xenopus Sox11(xSox11) required for protein interaction and function during neurogenesis. Our data show that Sox11 co-localizes and interacts with Pou3f2 and Ngn2 in the anterior neural plate and in early neurons, respectively. We also demonstrate that xSox11 does not interact with Ngn1, a high affinity partner of Sox11 in the mouse cortex, suggesting that Sox11 has species-specific partner proteins. Additionally, we determined that the N-terminus including the HMG domain of xSox11 is necessary for interaction with Pou3f2 and Ngn2, and established a novel role for the N-terminal 46 amino acids in the establishment of placodal progenitors. This is the first identification of partner proteins for Xenopus Sox11 and of domains required for partner protein interactions and distinct roles in neurogenesis.


Blood ◽  
1995 ◽  
Vol 86 (10) ◽  
pp. 3897-3904 ◽  
Author(s):  
RL Jr Ilaria ◽  
RA Van Etten

Src-homology region 2 (SH2) domains, by binding to tyrosine- phosphorylated sequences, mediate specific protein-protein interactions important in diverse signal transduction pathways. Previous studies have shown that activated forms of the Abl tyrosine kinase, including P210BCR/ABL of human chronic myelogenous leukemia, require the SH2 domain for the transformation of fibroblasts. To determine whether SH2 is also required for Bcr/Abl to transform hematopoietic cells, we have studied two SH2 domain mutations in P210BCR/ABL: a point mutation in the conserved FLVRES motif (P210/R1033K), which interferes with phosphotyrosine-binding by SH2, and a complete deletion of SH2 (P210/delta SH2). Despite a negative effect on intrinsic Abl kinase activity, both P210 SH2 mutants were still able to transform the hematopoietic factor-dependent cell lines Ba/F3 and FDC-P1 to growth factor independence. Unexpectedly, both mutants showed greater transforming activity than wild-type P210 in a quantitative transformation assay, probably as a consequence of increased stability of the SH2 mutant proteins in vivo. Cells transformed by both P210 SH2 mutants were leukemogenic in synaptic mice and P210/r1053K mice exhibited a distinct disease phenotype, reminiscent of that induced by v-Abl. These results demonstrate that while the Abl SH2 domain is essential for BCR/ABL transformation of fibroblasts, it is dispensable for the transformation of hematopoietic factor-dependent cell lines.


2001 ◽  
Vol 114 (7) ◽  
pp. 1253-1263 ◽  
Author(s):  
B.J. Mayer

The SH3 domain is perhaps the best-characterized member of the growing family of protein-interaction modules. By binding with moderate affinity and selectivity to proline-rich ligands, these domains play critical roles in a wide variety of biological processes ranging from regulation of enzymes by intramolecular interactions, increasing the local concentration or altering the subcellular localization of components of signaling pathways, and mediating the assembly of large multiprotein complexes. SH3 domains and their binding sites have cropped up in many hundreds of proteins in species from yeast to man, which suggests that they provide the cell with an especially handy and adaptable means of bringing proteins together. The wealth of genetic, biochemical and structural information available provides an intimate and detailed portrait of the domain, serving as a framework for understanding other modular protein-interaction domains. Processes regulated by SH3 domains also raise important questions about the nature of specificity and the overall logic governing networks of protein interactions.


Author(s):  
Mabruka Alfaidi ◽  
Matthew L. Scott ◽  
Anthony Wayne Orr

The Nck family of modular adaptor proteins, including Nck1 and Nck2, link phosphotyrosine signaling to changes in cytoskeletal dynamics and gene expression that critically modulate cellular phenotype. The Nck SH2 domain interacts with phosphotyrosine at dynamic signaling hubs, such as activated growth factor receptors and sites of cell adhesion. The Nck SH3 domains interact with signaling effectors containing proline-rich regions that mediate their activation by upstream kinases. In vascular biology, Nck1 and Nck2 play redundant roles in vascular development and postnatal angiogenesis. However, recent studies suggest that Nck1 and Nck2 differentially regulate cell phenotype in the adult vasculature. Domain-specific interactions likely mediate these isoform-selective effects, and these isolated domains may serve as therapeutic targets to limit specific protein-protein interactions. In this review, we highlight the function of the Nck adaptor proteins, the known differences in domain-selective interactions, and discuss the role of individual Nck isoforms in vascular remodeling and function.


2004 ◽  
Vol 379 (1) ◽  
pp. e1-e2 ◽  
Author(s):  
Michael B. YAFFE

Serine/threonine phosphorylation plays a central role in cellular regulation, either by altering a protein's activity directly or by inducing specific protein–protein interactions, which, in turn, affect localization, binding specificity or activity. One group of molecules that bind to phosphoserine/phosphothreonine-containing sequences are the 14-3-3 proteins, which regulate a wide range of cellular targets. A new analysis of the 14-3-3 phosphoproteome using affinity chromatography has revealed many previously unknown 14-3-3 ligands whose binding to 14-3-3 proteins is phosphorylation-dependent. This study by the Mackintosh group in this issue of the Biochemical Journal paves the way for future work on these important 14-3-3-interacting proteins.


Sign in / Sign up

Export Citation Format

Share Document