scholarly journals A Personalized Genomics Approach of the Prostate Cancer

Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1644
Author(s):  
Sanda Iacobas ◽  
Dumitru A. Iacobas

Decades of research identified genomic similarities among prostate cancer patients and proposed general solutions for diagnostic and treatments. However, each human is a dynamic unique with never repeatable transcriptomic topology and no gene therapy is good for everybody. Therefore, we propose the Genomic Fabric Paradigm (GFP) as a personalized alternative to the biomarkers approach. Here, GFP is applied to three (one primary—“A”, and two secondary—“B” & “C”) cancer nodules and the surrounding normal tissue (“N”) from a surgically removed prostate tumor. GFP proved for the first time that, in addition to the expression levels, cancer alters also the cellular control of the gene expression fluctuations and remodels their networking. Substantial differences among the profiled regions were found in the pathways of P53-signaling, apoptosis, prostate cancer, block of differentiation, evading apoptosis, immortality, insensitivity to anti-growth signals, proliferation, resistance to chemotherapy, and sustained angiogenesis. ENTPD2, AP5M1 BAIAP2L1, and TOR1A were identified as the master regulators of the “A”, “B”, “C”, and “N” regions, and potential consequences of ENTPD2 manipulation were analyzed. The study shows that GFP can fully characterize the transcriptomic complexity of a heterogeneous prostate tumor and identify the most influential genes in each cancer nodule.

Author(s):  
Sanda Iacobas ◽  
Dumitru A. Iacobas

Prostate cancer is a leading cause of death among men but its genomic characterization and best therapeutic strategy are still under debate. The Genomic Fabric Paradigm (GFP) considers the transcriptome as a multi-dimensional mathematical object subjected to a dynamic set of expression correlations among the genes. Here, GFP is applied to gene expression profiles of three (one primary, and two secondary) cancer nodules and the surrounding normal tissue from a surgically removed prostate tumor. GFP was used to determine the regulation and rewiring of the P53 signaling, apoptosis, prostate cancer and several other pathways involved in survival and proliferation of the cancer cells. Genes responsible for the block of differentiation, evading apoptosis, immortality, insensitivity to anti-growth signals, proliferation, resistance to chemotherapy and sustained angiogenesis were found as differently regulated in the three cancer nodules with respect to the normal tissue. The analysis indicates that even histo-pathologically equally graded cancer nodules from the same tumor have substantially different transcriptomic organizations, raising legitimate questions about the validity of meta-analyses comparing large populations of healthy and cancer humans. The study suggests that GFP may provide a personalized alternative to the biomarkers’ approach of cancer genomics.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Ieva Rauluseviciute ◽  
Finn Drabløs ◽  
Morten Beck Rye

Abstract Background Prostate cancer (PCa) has the highest incidence rates of cancers in men in western countries. Unlike several other types of cancer, PCa has few genetic drivers, which has led researchers to look for additional epigenetic and transcriptomic contributors to PCa development and progression. Especially datasets on DNA methylation, the most commonly studied epigenetic marker, have recently been measured and analysed in several PCa patient cohorts. DNA methylation is most commonly associated with downregulation of gene expression. However, positive associations of DNA methylation to gene expression have also been reported, suggesting a more diverse mechanism of epigenetic regulation. Such additional complexity could have important implications for understanding prostate cancer development but has not been studied at a genome-wide scale. Results In this study, we have compared three sets of genome-wide single-site DNA methylation data from 870 PCa and normal tissue samples with multi-cohort gene expression data from 1117 samples, including 532 samples where DNA methylation and gene expression have been measured on the exact same samples. Genes were classified according to their corresponding methylation and expression profiles. A large group of hypermethylated genes was robustly associated with increased gene expression (UPUP group) in all three methylation datasets. These genes demonstrated distinct patterns of correlation between DNA methylation and gene expression compared to the genes showing the canonical negative association between methylation and expression (UPDOWN group). This indicates a more diversified role of DNA methylation in regulating gene expression than previously appreciated. Moreover, UPUP and UPDOWN genes were associated with different compartments — UPUP genes were related to the structures in nucleus, while UPDOWN genes were linked to extracellular features. Conclusion We identified a robust association between hypermethylation and upregulation of gene expression when comparing samples from prostate cancer and normal tissue. These results challenge the classical view where DNA methylation is always associated with suppression of gene expression, which underlines the importance of considering corresponding expression data when assessing the downstream regulatory effect of DNA methylation.


2020 ◽  
Vol 27 (7) ◽  
pp. 441-456
Author(s):  
Juan A Ardura ◽  
Luis Álvarez-Carrión ◽  
Irene Gutiérrez-Rojas ◽  
Peter A Friedman ◽  
Arancha R Gortázar ◽  
...  

Bone metastases are common in advanced prostate cancer patients, but mechanisms by which specific pro-metastatic skeletal niches are formed before tumor cell homing are unclear. We aimed to analyze the effects of proteins secreted by primary prostate tumors on the bone microenvironment before the settlement and propagation of metastases. Here, using an in vivo pre-metastatic prostate cancer model based on the implantation of prostate adenocarcinoma TRAMP-C1 cells in immunocompetent C57BL/6 mice, we identify MINDIN as a prostate tumor secreted protein that induces bone microstructural and bone remodeling gene expression changes before tumor cell homing. Associated with these changes, increased tumor cell adhesion to the endosteum ex vivo and to osteoblasts in vitro was observed. Furthermore, MINDIN promoted osteoblast proliferation and mineralization and monocyte expression of osteoclast markers. β-catenin signaling pathway revealed to mediate MINDIN actions on osteoblast gene expression but failed to affect MINDIN-induced adhesion to prostate tumor cells or monocyte differentiation to osteoclasts. Our study evidences that MINDIN secretion by primary prostate tumors creates a favorable bone environment for tumor cell homing before metastatic spread.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 780
Author(s):  
Martha Zavridou ◽  
Areti Strati ◽  
Evangelos Bournakis ◽  
Stavroula Smilkou ◽  
Victoria Tserpeli ◽  
...  

Liquid biopsy, based on the analysis of circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA), provides non-invasive real-time monitoring of tumor evolution and therapeutic efficacy. We performed for the first time a direct comparison study on gene expression and DNA methylation markers in CTCs and paired plasma-derived exosomes and evaluated their prognostic significance in metastatic castration resistant prostate cancer. This prospective liquid biopsy (LB) study was based on a group of 62 metastatic castration resistant prostate cancer (mCRPC) patients and 10 healthy donors (HD) as controls. Identical blood draws were used to: (a) enumerate CTC and tumor-derived extracellular vesicles (tdEVs) using CellSearch (CS) and (b) analyze CTCs and paired plasma-derived exosomes at the gene expression and DNA methylation level. CTCs were enumerated using CellSearch in 57/62 patients, with values ranging from 5 to 854 cells/7.5 mL PB. Our results revealed for the first time a significantly higher positivity of gene expression markers (CK-8, CK-18, TWIST1, PSMA, AR-FL, AR-V7, AR-567 and PD-L1 mRNA) in EpCAM-positive CTCs compared to plasma-derived exosomes. GSTP1, RASSF1A and SCHLAFEN were methylated both in CTC and exosomes. In CTCs, Kaplan–Meier analysis revealed that CK-19 (p = 0.009), PSMA (p = 0.001), TWIST1 (p = 0.001) expression and GSTP1 (p = 0.001) methylation were correlated with OS, while in exosomes GSTP1 (p = 0.007) and RASSF1A (p = 0.001) methylation was correlated with OS. Our direct comparison study of CTCs and exosomes at gene expression and DNA methylation level, revealed for the first time a significantly higher positivity in EpCAM-positive CTCs compared to plasma-derived exosomes. Future perspective of this study should be the evaluation of clinical utility of molecular biomarkers in CTCs and exosomes on independent multicentric cohorts with mCRPC patients.


2022 ◽  
Vol 44 (1) ◽  
pp. 360-382
Author(s):  
Sanda Iacobas ◽  
Dumitru Andrei Iacobas

Many years and billions spent for research did not yet produce an effective answer to prostate cancer (PCa). Not only each human, but even each cancer nodule in the same tumor, has unique transcriptome topology. The differences go beyond the expression level to the expression control and networking of individual genes. The unrepeatable heterogeneous transcriptomic organization among men makes the quest for universal biomarkers and “fit-for-all” treatments unrealistic. We present a bioinformatics procedure to identify each patient’s unique triplet of PCa Gene Master Regulators (GMRs) and predict consequences of their experimental manipulation. The procedure is based on the Genomic Fabric Paradigm (GFP), which characterizes each individual gene by the independent expression level, expression variability and expression coordination with each other gene. GFP can identify the GMRs whose controlled alteration would selectively kill the cancer cells with little consequence on the normal tissue. The method was applied to microarray data on surgically removed prostates from two men with metastatic PCas (each with three distinct cancer nodules), and DU145 and LNCaP PCa cell lines. The applications verified that each PCa case is unique and predicted the consequences of the GMRs’ manipulation. The predictions are theoretical and need further experimental validation.


2018 ◽  
Author(s):  
John G. Foster ◽  
Rebecca Arkell ◽  
Marco Del Giudice ◽  
Chinedu Anene ◽  
Andrea Lauria ◽  
...  

AbstractProstate cancer (PCa) is genomically driven by dysregulation of transcriptional networks involving the transcriptional factors (TFs) FOXA1, ERG, AR, and HOXB13. However, the role of these specific TFs in the regulation of alternative pre-mRNA splicing (AS), which is a proven therapeutic vulnerability for cancers driven by the TF MYC, is not described. Using transcriptomic datasets from PCa patients, we tested for an association between expression of FOXA1, ERG, AR, HOXB13, and MYC, and genes involved in AS - termed splicing-related proteins (SRPs), which have pleiotropic roles in RNA metabolism. We identified FOXA1 as the strongest predictor of dysregulated SRP gene expression, which was associated with PCa disease relapse after treatment. Subsequently, we selected a subset of FOXA1-binding and actively-transcribed SRP genes that phenocopy the FOXA1 dependency of PCa cells, and confirmed in vitro via knockdown and over-expression that FOXA1 regulates SRP gene expression. Finally, we demonstrated the persistence of a FOXA1-SRP gene association in treatment-relapsed castration-resistant PCa (CRPCa) patients. Our data demonstrate, for the first time, that FOXA1 controls dysregulated SRP gene expression, which is associated with poor PCa patient outcomes. Analogous to MYC-driven cancers, our findings implicate the therapeutic targeting of SRPs and AS in FOXA1-overexpressing PCa.


2005 ◽  
Vol 173 (4S) ◽  
pp. 110-110
Author(s):  
Kirsten L. Greene ◽  
Hong Zhao ◽  
Hiroaki Shiina ◽  
Long-Cheng Li ◽  
Yuichiro Tanaka ◽  
...  

1986 ◽  
Vol 56 (02) ◽  
pp. 133-136 ◽  
Author(s):  
Hamid Al-Mondhiry ◽  
Joseph Drago ◽  
Mary J Bartholomew

SummaryHypofibrinogenemia and disseminated intravascular coagulation are common events in patients with metastatic prostate carcinoma. This study tests the hypothesis that prostate tumor growth and metastasis is associated with sustained activation of fibrinolysis secondary to increased release of plasminogen activator. We implanted an androgen-insensitive prostate tumor into an inbred strain of rats and serially measured plasminogen, plasminogen activator, plasmin and fibrinogen. Control groups included animals without tumor and a group implanted with transitional cell bladder carcinoma, a locally infiltrating tumor not usually associated with hemostatic complications. Our results showed a significant and steady rise in plasma plasminogen activator, plasmin and fibrinogen levels in animals implanted with prostate cancer. This, however, is not specific for prostate tumor. Similar, perhaps more profound changes were noted in animals implanted with the transitional cell carcinoma.


Sign in / Sign up

Export Citation Format

Share Document