scholarly journals Tuning IgE: IgE-Associating Molecules and Their Effects on IgE-Dependent Mast Cell Reactions

Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1697
Author(s):  
Tomoaki Ando ◽  
Jiro Kitaura

The recent emergence of anti-immunoglobulin E (IgE) drugs and their candidates for humans has endorsed the significance of IgE-dependent pathways in allergic disorders. IgE is distributed locally in the tissues or systemically to confer a sensory mechanism in a domain of adaptive immunity to the otherwise innate type of effector cells, namely, mast cells and basophils. Bound on the high-affinity IgE receptor FcεRI, IgE enables fast memory responses against revisiting threats of venoms, parasites, and bacteria. However, the dysregulation of IgE-dependent reactions leads to potentially life-threatening allergic diseases, such as asthma and anaphylaxis. Therefore, reactivity of the IgE sensor is fine-tuned by various IgE-associating molecules. In this review, we discuss the mechanistic basis for how IgE-dependent mast cell activation is regulated by the IgE-associating molecules, including the newly developed therapeutic candidates.

2020 ◽  
Vol 11 ◽  
Author(s):  
Maria A. Chelombitko ◽  
Boris V. Chernyak ◽  
Artem V. Fedorov ◽  
Roman A. Zinovkin ◽  
Ehud Razin ◽  
...  

Mast cells play a key role in the regulation of innate and adaptive immunity and are involved in pathogenesis of many inflammatory and allergic diseases. The most studied mechanism of mast cell activation is mediated by the interaction of antigens with immunoglobulin E (IgE) and a subsequent binding with the high-affinity receptor Fc epsilon RI (FcεRI). Increasing evidences indicated that mitochondria are actively involved in the FcεRI-dependent activation of this type of cells. Here, we discuss changes in energy metabolism and mitochondrial dynamics during IgE-antigen stimulation of mast cells. We reviewed the recent data with regards to the role played by mitochondrial membrane potential, mitochondrial calcium ions (Ca2+) influx and reactive oxygen species (ROS) in mast cell FcεRI-dependent activation. Additionally, in the present review we have discussed the crucial role played by the pyruvate dehydrogenase (PDH) complex, transcription factors signal transducer and activator of transcription 3 (STAT3) and microphthalmia-associated transcription factor (MITF) in the development and function of mast cells. These two transcription factors besides their nuclear localization were also found to translocate in to the mitochondria and functions as direct modulators of mitochondrial activity. Studying the role played by mast cell mitochondria following their activation is essential for expanding our basic knowledge about mast cell physiological functions and would help to design mitochondria-targeted anti-allergic and anti-inflammatory drugs.


F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 251
Author(s):  
Binh Phong ◽  
Lawrence P. Kane

Polymorphisms in theT cell (or transmembrane) immunoglobulin and mucin domain 1(TIM-1) gene, particularly in the mucin domain, have been associated with atopy and allergic diseases in mice and human. Genetic- and antibody-mediated studies revealed that Tim-1 functions as a positive regulator of Th2 responses, while certain antibodies to Tim-1 can exacerbate or reduce allergic lung inflammation. Tim-1 can also positively regulate the function of B cells, NKT cells, dendritic cells and mast cells. However, the precise molecular mechanisms by which Tim-1 modulates immune cell function are currently unknown. In this study, we have focused on defining Tim-1-mediated signaling pathways that enhance mast cell activation through the high affinity IgE receptor (FceRI). Using a Tim-1 mouse model lacking the mucin domain (Tim-1Dmucin), we show for the first time that the polymorphic Tim-1 mucin region is dispensable for normal mast cell activation. We further show that Tim-4 cross-linking of Tim-1 enhances select signaling pathways downstream of FceRI in mast cells, including mTOR-dependent signaling, leading to increased cytokine production but without affecting degranulation.


F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 251
Author(s):  
Binh Phong ◽  
Lawrence P. Kane

Polymorphisms in theT cell (or transmembrane) immunoglobulin and mucin domain 1(TIM-1) gene, particularly in the mucin domain, have been associated with atopy and allergic diseases in mice and human. Genetic- and antibody-mediated studies revealed that Tim-1 functions as a positive regulator of Th2 responses, while certain antibodies to Tim-1 can exacerbate or reduce allergic lung inflammation. Tim-1 can also positively regulate the function of B cells, NKT cells, dendritic cells and mast cells. However, the precise molecular mechanisms by which Tim-1 modulates immune cell function are currently unknown. In this study, we have focused on defining Tim-1-mediated signaling pathways that enhance mast cell activation through the high affinity IgE receptor (FceRI). Using a Tim-1 mouse model lacking the mucin domain (Tim-1Dmucin), we show for the first time that the polymorphic Tim-1 mucin region is dispensable for normal mast cell activation. We further show that Tim-4 cross-linking of Tim-1 enhances select signaling pathways downstream of FceRI in mast cells, including mTOR-dependent signaling, leading to increased cytokine production but without affecting degranulation.


2018 ◽  
Vol 115 (42) ◽  
pp. E9859-E9868 ◽  
Author(s):  
Wenlong Lin ◽  
Fasheng Su ◽  
Rahul Gautam ◽  
Ning Wang ◽  
Yuanyuan Zhang ◽  
...  

The signaling cascades triggered by the cross-linkage of immunoglobulin E (IgE) with its high-affinity receptor (FcεRI) on mast cells contribute to multiple allergic disorders, such as asthma, rhinitis, and atopic dermatitis. Restraint of intracellular signals for mast cell activation is essential to restore homeostasis. In this study, we found that Raf kinase inhibitor protein (RKIP) negatively regulated mast cell activation. RKIP-deficient mast cells showed greater IgE−FcεRI-mediated activation than wild-type mast cells. Consistently, RKIP deficiency in mast cells rendered mice more sensitive to IgE−FcεRI-mediated allergic responses and ovalbumin-induced airway inflammation. Mechanistically, RKIP interacts with the p85 subunit of PI3K, prevents it from binding to GRB2-associated binding protein 2 (Gab2), and eventually inhibits the activation of the PI3K/Akt/NF-κB complex and its downstream signaling. Furthermore, the expression of RKIP was significantly down-regulated in the peripheral blood of asthma patients and in the IgE−FcεRI-stimulated mast cells. Collectively, our findings not only suggest that RKIP plays an important role in controlling mast cell-mediated allergic responses but also provide insight into therapeutic targets for mast cell-related allergic diseases.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Shotaro Nakajima ◽  
Kayoko Ishimaru ◽  
Anna Kobayashi ◽  
Guannan Yu ◽  
Yuki Nakamura ◽  
...  

AbstractInterleukin-33 (IL-33)/ST2–mediated mast cell activation plays important roles in the pathophysiology of allergic diseases. Hence, pharmacologically targeting the IL-33/ST2 pathway in mast cells could help to treat such diseases. We found that resveratrol inhibits IL-33/ST2–mediated mast cell activation. Resveratrol suppressed IL-33–induced IL-6, IL-13, and TNF-α production in mouse bone marrow–derived mast cells (BMMCs), mouse fetal skin–derived mast cells, and human basophils. Resveratrol also attenuated cytokine expression induced by intranasal administration of IL-33 in mouse lung. IL-33–mediated cytokine production in mast cells requires activation of the NF-κB and MAPK p38–MAPK-activated protein kinase-2/3 (MK2/3)–PI3K/Akt pathway, and resveratrol clearly inhibited IL-33–induced activation of the MK2/3–PI3K/Akt pathway, but not the NF-κB pathway, without affecting p38 in BMMCs. Importantly, resveratrol inhibited the kinase activity of MK2, and an MK2/3 inhibitor recapitulated the suppressive effects of resveratrol. Resveratrol and an MK2/3 inhibitor also inhibited IgE-dependent degranulation and cytokine production in BMMCs, concomitant with suppression of the MK2/3–PI3K/Akt pathway. These findings indicate that resveratrol inhibits both IL-33/ST2–mediated and IgE-dependent mast cell activation principally by targeting the MK2/3–PI3K/Akt axis downstream of p38. Thus, resveratrol may have potential for the prevention and treatment of broad ranges of allergic diseases.


Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1258
Author(s):  
Suzanne Abbring ◽  
Bart R. J. Blokhuis ◽  
Julie L. Miltenburg ◽  
Kiri G. J. Romano Olmedo ◽  
Johan Garssen ◽  
...  

The mechanisms underlying the allergy-protective effects of raw cow’s milk are poorly understood. The current focus is mainly on the modulation of T cell responses. In the present study, we investigated whether raw cow’s milk can also directly inhibit mast cells, the key effector cells in IgE-mediated allergic responses. Primary murine bone marrow-derived mast cells (BMMC) and peritoneal mast cells (PMC), were incubated with raw milk, heated raw milk, or shop milk, prior to IgE-mediated activation. The effects on mast cell activation and underlying signaling events were assessed. Raw milk was furthermore fractionated based on molecular size and obtained fractions were tested for their capacity to reduce IgE-mediated mast cell activation. Coincubation of BMMC and PMC with raw milk prior to activation reduced β-hexosaminidase release and IL-6 and IL-13 production, while heated raw milk or shop milk had no effect. The reduced mast cell activation coincided with a reduced intracellular calcium influx. In addition, SYK and ERK phosphorylation levels, both downstream signaling events of the FcεRI, were lower in raw milk-treated BMMC compared to control BMMC, although differences did not reach full significance. Raw milk-treated BMMC furthermore retained membrane-bound IgE expression after allergen stimulation. Raw milk fractionation showed that the heat-sensitive raw milk components responsible for the reduced mast cell activation are likely to have a molecular weight of > 37 kDa. The present study demonstrates that raw cow’s milk can also directly affect mast cell activation. These results extend the current knowledge on mechanisms via which raw cow’s milk prevents allergic diseases, which is crucial for the development of new, microbiologically safe, nutritional strategies to reduce allergic diseases.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Hyun Ju Do ◽  
Tae Woo Oh ◽  
Kwang-Il Park

This study is aimed at determining whether Sesamum indicum Linn. beneficially influences FcεRI-mediated allergic reactions in RBL-2H3 mast cells; it is also aimed at further investigating Lyn/Fyn and Syk signaling pathways. To examine the antiallergic effect of Sesamum indicum Linn. extract (SIE), we treated antigen/immunoglobulin E- (IgE-) sensitized mast cells with extracts of various concentrations. We examined the degranulation release and concentrations of inflammatory mediators. Additionally, the expressions of genes involved in the FcεRI and arachidonate signaling pathways were examined. SIE inhibited the degranulation and secretion of inflammatory mediators in antigen/IgE-sensitized mast cells. SIE reduced the expressions of FcεRI signaling-related genes, such as Syk, Lyn, and Fyn, and the phosphorylation of extracellular signal-regulated kinase in antigen/IgE-sensitized mast cells. Additionally, in late allergic responses, SIE reduced PGD2 release and COX-2 and cPLA2 phosphorylation expression in FcεRI-mediated mast cell activation. Lastly, 250–500 mg/kg SIE significantly attenuated the Ag/IgE-induced passive cutaneous anaphylaxis (PCA) reaction in mice. The potent effect of SIE on RBL-2H3 mast cell activation indicates that the extract could potentially be used as a novel inhibitor against allergic reactions.


2020 ◽  
Vol 21 (23) ◽  
pp. 9030
Author(s):  
Peter Valent ◽  
Cem Akin ◽  
Boguslaw Nedoszytko ◽  
Patrizia Bonadonna ◽  
Karin Hartmann ◽  
...  

Mast cell activation (MCA) is seen in a variety of clinical contexts and pathologies, including IgE-dependent allergic inflammation, other immunologic and inflammatory reactions, primary mast cell (MC) disorders, and hereditary alpha tryptasemia (HAT). MCA-related symptoms range from mild to severe to life-threatening. The severity of MCA-related symptoms depends on a number of factors, including genetic predisposition, the number and releasability of MCs, organs affected, and the type and consequences of comorbid conditions. In severe systemic reactions, MCA is demonstrable by a substantial increase of basal serum tryptase levels above the individual’s baseline. When, in addition, the symptoms are recurrent, involve more than one organ system, and are responsive to therapy with MC-stabilizing or mediator-targeting drugs, the consensus criteria for the diagnosis of MCA syndrome (MCAS) are met. Based on the etiology of MCA, patients can further be classified as having i) primary MCAS where KIT-mutated, clonal, MCs are detected; ii) secondary MCAS where an underlying IgE-dependent allergy or other reactive MCA-triggering pathology is found; or iii) idiopathic MCAS, where neither a triggering reactive state nor KIT-mutated MCs are identified. Most severe MCA events occur in combined forms of MCAS, where KIT-mutated MCs, IgE-dependent allergies and sometimes HAT are detected. These patients may suffer from life-threatening anaphylaxis and are candidates for combined treatment with various types of drugs, including IgE-blocking antibodies, anti-mediator-type drugs and MC-targeting therapy. In conclusion, detailed knowledge about the etiology, underlying pathologies and co-morbidities is important to establish the diagnosis and develop an optimal management plan for MCAS, following the principles of personalized medicine.


Sign in / Sign up

Export Citation Format

Share Document