scholarly journals A Novel Boron Lipid to Modify Liposomal Surfaces for Boron Neutron Capture Therapy

Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3421
Author(s):  
Makoto Shirakawa ◽  
Alexander Zaboronok ◽  
Kei Nakai ◽  
Yuhki Sato ◽  
Sho Kayaki ◽  
...  

Boron neutron capture therapy (BNCT) is a cancer treatment with clinically demonstrated efficacy using boronophenylalanine (BPA) and sodium mercaptododecaborate (BSH). However, tumor tissue selectivity of BSH and retention of BPA in tumor cells is a constant problem. To ensure boron accumulation and retention in tumor tissues, we designed a novel polyethylene glycol (PEG)-based boron-containing lipid (PBL) and examined the potency of delivery of boron using novel PBL-containing liposomes, facilitated by the enhanced permeability and retention (EPR) effect. PBL was synthesized by the reaction of distearoylphosphoethanolamine and BSH linked by PEG with Michael addition while liposomes modified using PBL were prepared from the mixed lipid at a constant molar ratio. In this manner, novel boron liposomes featuring BSH in the liposomal surfaces, instead of being encapsulated in the inner aqueous phase or incorporated in the lipid bilayer membrane, were prepared. These PBL liposomes also carry additional payload capacity for more boron compounds (or anticancer agents) in their inner aqueous phase. The findings demonstrated that PBL liposomes are promising candidates to effect suitable boron accumulation for BNCT.

2021 ◽  
Vol 11 ◽  
Author(s):  
Timothy D. Malouff ◽  
Danushka S. Seneviratne ◽  
Daniel K. Ebner ◽  
William C. Stross ◽  
Mark R. Waddle ◽  
...  

Boron neutron capture therapy (BNCT) is an emerging treatment modality aimed at improving the therapeutic ratio for traditionally difficult to treat tumors. BNCT utilizes boronated agents to preferentially deliver boron-10 to tumors, which, after undergoing irradiation with neutrons, yields litihium-7 and an alpha particle. The alpha particle has a short range, therefore preferentially affecting tumor tissues while sparing more distal normal tissues. To date, BNCT has been studied clinically in a variety of disease sites, including glioblastoma multiforme, meningioma, head and neck cancers, lung cancers, breast cancers, hepatocellular carcinoma, sarcomas, cutaneous malignancies, extramammary Paget’s disease, recurrent cancers, pediatric cancers, and metastatic disease. We aim to provide an up-to-date and comprehensive review of the studies of each of these disease sites, as well as a review on the challenges facing adoption of BNCT.


Molecules ◽  
2017 ◽  
Vol 22 (9) ◽  
pp. 1393 ◽  
Author(s):  
Damian Kaniowski ◽  
Katarzyna Ebenryter-Olbińska ◽  
Milena Sobczak ◽  
Błażej Wojtczak ◽  
Sławomir Janczak ◽  
...  

2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii345-iii345
Author(s):  
Hsin-Hung Chen ◽  
Yi-Wei Chen

Abstract A 6 y/o girl with recurrent multifocal glioblastoma received 3 times of boron neutron capture therapy (BNCT) and chimeric antigen receptor (CAR)–engineered T cells targeting the tumor-associated antigen HER2. Multiple infusions of CAR T cells were administered over 30 days through intraventricular delivery routes. It was not associated with any toxic effects of grade 3 or higher. After BNCT and CAR T-cell treatment, regression of all existing intracranial lesions were observed, along with corresponding increases in levels of cytokines and immune cells in the cerebrospinal fluid, but new lesions recurred soon after the treatment. This clinical response continued for 14 months after the initiation of first recurrence.


2021 ◽  
Author(s):  
Jing He ◽  
Heng Yan ◽  
Yanrong Du ◽  
Yan Ji ◽  
Fei Cai ◽  
...  

A reliable copper-mediated nucleophilic radiosynthesis of the BNCT-oriented PET probe [18F]FBPA was developed using novel aryldiboron precursors.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pablo Torres-Sánchez ◽  
Ignacio Porras ◽  
Nataliya Ramos-Chernenko ◽  
Fernando Arias de Saavedra ◽  
Javier Praena

AbstractBoron Neutron Capture Therapy (BNCT) is facing a new era where different projects based on accelerators instead of reactors are under development. The new facilities can be placed at hospitals and will increase the number of clinical trials. The therapeutic effect of BNCT can be improved if a optimized epithermal neutron spectrum is obtained, for which the beam shape assembly is a key ingredient. In this paper we propose an optimal beam shaping assembly suited for an affordable low energy accelerator. The beam obtained with the device proposed accomplishes all the IAEA recommendations for proton energies between 2.0 and 2.1 MeV. In addition, there is an overall improvement of the figures of merit with respect to BNCT facilities and previous proposals of new accelerator-based facilities.


Sign in / Sign up

Export Citation Format

Share Document