scholarly journals Recent Advances in CRISPR/Cas9-Mediated Genome Editing in Dictyostelium

Cells ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 46 ◽  
Author(s):  
Tetsuya Muramoto ◽  
Hoshie Iriki ◽  
Jun Watanabe ◽  
Takefumi Kawata

In the last 30 years, knockout of target genes via homologous recombination has been widely performed to clarify the physiological functions of proteins in Dictyostelium. As of late, CRISPR/Cas9-mediated genome editing has become a versatile tool in various organisms, including Dictyostelium, enabling rapid high-fidelity modification of endogenous genes. Here we reviewed recent progress in genome editing in Dictyostelium and summarised useful CRISPR vectors that express sgRNA and Cas9, including several microorganisms. Using these vectors, precise genome modifications can be achieved within 2–3 weeks, beginning with the design of the target sequence. Finally, we discussed future perspectives on the use of CRISPR/Cas9-mediated genome editing in Dictyostelium.

2017 ◽  
Vol 28 (7) ◽  
pp. 898-906 ◽  
Author(s):  
Yohei Katoh ◽  
Saki Michisaka ◽  
Shohei Nozaki ◽  
Teruki Funabashi ◽  
Tomoaki Hirano ◽  
...  

The CRISPR/Cas9 system has revolutionized genome editing in virtually all organisms. Although the CRISPR/Cas9 system enables the targeted cleavage of genomic DNA, its use for gene knock-in remains challenging because levels of homologous recombination activity vary among various cells. In contrast, the efficiency of homology-independent DNA repair is relatively high in most cell types. Therefore the use of a homology-independent repair mechanism is a possible alternative for efficient genome editing. Here we constructed a donor knock-in vector optimized for the CRISPR/Cas9 system and developed a practical system that enables efficient disruption of target genes by exploiting homology-independent repair. Using this practical knock-in system, we successfully disrupted genes encoding proteins involved in ciliary protein trafficking, including IFT88 and IFT20, in hTERT-RPE1 cells, which have low homologous recombination activity. The most critical concern using the CRISPR/Cas9 system is off-target cleavage. To reduce the off-target cleavage frequency and increase the versatility of our knock-in system, we constructed a universal donor vector and an expression vector containing Cas9 with enhanced specificity and tandem sgRNA expression cassettes. We demonstrated that the second version of our system has improved usability.


2019 ◽  
Author(s):  
Zhiyu Zhong ◽  
Junhong Guo ◽  
Liang Deng ◽  
Li Chen ◽  
Jian Wang ◽  
...  

AbstractConventional CRISPR/Cas genetic manipulation has been profitably applied to the genus Streptomyces, the most prolific bacterial producers of antibiotics. However, its reliance on DNA double-strand break (DSB) formation leads to unacceptably low yields of desired recombinants. We have adapted for Streptomyces recently-introduced cytidine base editors (CBEs) and adenine base editors (ABEs) which enable targeted C-to-T or A-to-G nucleotide substitutions, respectively, bypassing DSB and the need for a repair template. We report successful genome editing in Streptomyces at frequencies of around 50% using defective Cas9-guided base editors and up to 100% by using nicked Cas9-guided base editors. Furthermore, we demonstrate the multiplex genome editing potential of the nicked Cas9-guided base editor BE3 by programmed mutation of nine target genes simultaneously. Use of the high-fidelity version of BE3 (HF-BE3) essentially improved editing specificity. Collectively, this work provides a powerful new tool for genome editing in Streptomyces.


2019 ◽  
Vol 60 (10) ◽  
pp. 2255-2262 ◽  
Author(s):  
Akihiro Yamamoto ◽  
Takashi Ishida ◽  
Mika Yoshimura ◽  
Yuri Kimura ◽  
Shinichiro Sawa

Abstract Clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9), comprising an RNA-guided DNA endonuclease and a programmable guide RNA (gRNA), is currently recognized to be a powerful genome-editing tool and is widely used in biological science. Despite the usefulness of the system, a protospacer-adjacent motif (PAM) immediately downstream of the target sequence needs to be taken into account in the design of the gRNA, a requirement which limits the flexibility of the CRISPR-based genome-editing system. To overcome this limitation, a Cas9 isolated from Streptococcus pyogenes, namely SpCas9, engineered to develop several variants of Cas9 nuclease, has been generated. SpCas9 recognizes the NGG sequence as the PAM, whereas its variants are capable of interacting with different PAMs. Despite the potential advantage of the Cas9 variants, their functionalities have not previously been tested in the widely used model plant, Arabidopsis thaliana. Here, we developed a plant-specific vector series harboring SpCas9-VQR (NGAN or NGNG) or SpCas9-EQR (NGAG) and evaluated their functionalities. These modified Cas9 nucleases efficiently introduced mutations into the CLV3 and AS1 target genes using gRNAs that were compatible with atypical PAMs. Furthermore, the generated mutations were passed on to their offspring. This study illustrated the usefulness of the SpCas9 variants because the ability to generate heritable mutations will be of great benefit in molecular genetic analyses. A greater number of potential SpCas9-variant-recognition sites in these genes are predicted, compared with those of conventional SpCas9. These results demonstrated the usefulness of the SpCas9 variants for genome editing in the field of plant science research.


Genes ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 466 ◽  
Author(s):  
Mahmuda Binte Monsur ◽  
Gaoneng Shao ◽  
Yusong Lv ◽  
Shakeel Ahmad ◽  
Xiangjin Wei ◽  
...  

Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9), a newly developed genome-editing tool, has revolutionized animal and plant genetics by facilitating modification of target genes. This simple, convenient base-editing technology was developed to improve the precision of genome editing. Base editors generate precise point mutations by permanent base conversion at a specific point, with very low levels of insertions and deletions. Different plant base editors have been established by fusing various nucleobase deaminases with Cas9, Cas13, or Cas12a (Cpf1), proteins. Adenine base editors can efficiently convert adenine (A) to guanine (G), whereas cytosine base editors can convert cytosine (C) to thymine (T) in the target region. RNA base editors can induce a base substitution of A to inosine (I) or C to uracil (U). In this review, we describe the precision of base editing systems and their revolutionary applications in plant science; we also discuss the limitations and future perspectives of this approach.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3481-3481
Author(s):  
Priscila Keiko Matsumoto Martin ◽  
Dulcinéia Martins de Albuquerque ◽  
Carolina Lanaro ◽  
Ryo Kurita ◽  
Yukio Nakamura ◽  
...  

Abstract Sickle cell disease (SCD) is a serious condition, chronic and undoubtedly represents a public health problem worldwide. SCD is caused by a point mutation in codon 6 of the β globin gene resulting in the production of a structurally abnormal hemoglobin, hemoglobin S. Although the cause of the disease has been known for more than fifty years, therapeutic options are still quite limited. High levels of fetal hemoglobin (HbF) in the blood are associated with a better clinical outcome in SCD patients. In some individuals, the expression of γ-globin gene persists into adulthood in elevated levels, which is called hereditary persistence of fetal hemoglobin (HPFH). A single nucleotide mutation from C to G at position -195 of the HBG1 gene promoter, called non deletional HPFH Brazilian type (nd-HPFH-B), augments the levels of HbF in patients in 7%- 30%. Nd-HPFH-B has been described by our group, but the mechanism and how this single mutation rises HbF levels differently in red blood cells is still unknown. Genome editing using CRISPR/Cas9 in HUDEP-2 cell, an erythroid precursor line, has been developed through homologous direct repair from a small single DNA strand containing the guanine in -195 position at HBG1 gene promotor. All the other genes, including the second HBG1 allele were unaltered. This point mutation has been carried out by CRISPR/Cas9 high fidelity system, capable of performing a specific break in the DNA target sequence, that improves homologous recombination rate of the donor sequence containing the -195 C<G mutation (ssODN -195). For the first time, we generated a HUDEP-2 cell line with the -195 C>T mutation in HBG1 promoter using CRISPR/Cas9 genome editing. The HUDEP-2 cells were nucleofected with Cas9 high fidelity ribonucleoprotein (104 pmol), crRNA:tracrRNA (120 pmol) complex and 1uM ssODN -195, using CD34+ human cell kit and program E-001 in AMAXA Nucleofector 4D- device (Lonza). Seven days after nucleofection, the transformed cells were submitted to clonal selection for 25 days. The genomic DNA from 48 clones were submitted by Sanger Sequencing. The sequencing analysis showed highest Crispr/Cas9 efficiency in genomic DNA cut (77.08%; 37/48) and satisfactory ssODN -195 homologous recombination (10.4%; 5/48). Five nd-HPFH-B HUDEP-2 clones and three other clones without the mutation, but with indels after Cas9 DNA cut (controls), were expanded in culture and the HbF levels were measure with anti-HbF antibody by flow cytometry in two biological replicates. HbF levels in nd-HPFH-B HUDEP-2 clones were 6.02%±1.4, 8.25% ± 0.28, 10.18% ± 3.71, 11.95% ± 0.49, 26,3% ± 4,6 while in controls were 1.69% ± 0.26, 1.66% ± 0.26, 0.59% ± 0.06. Two nd-HPFH-B clones were differentiated into erythrocyte in vitro, and fetal hemoglobin levels persisted at high levels seen previously. In addition, α-globin, β-globin and γ-globin mRNA levels were evaluated in three nd-HPFH-B HUDEP-2 clones and two control clones. The mRNA HBG1/HBG1+HBB percentage in nd-HPFH-B were 96.16% ± 4.10 against 22.63% ± 9.64 in controls. The monoallelic single nucleotide mutation -195 C>G is capable to increase the fetal hemoglobin levels up to 30% in nd-HPFH-B HUDEP-2, and our results shows that this is a potential experimental in vitro model to be used in future studies. Disclosures No relevant conflicts of interest to declare.


2018 ◽  
Vol 19 (8) ◽  
pp. 631-643 ◽  
Author(s):  
Fazlurrahman Khan ◽  
Mohammad M. Khan ◽  
Young-Mog Kim

2021 ◽  
Vol 7 (7) ◽  
pp. 505
Author(s):  
Ping Zhang ◽  
Yu Wang ◽  
Chenxi Li ◽  
Xiaoyu Ma ◽  
Lan Ma ◽  
...  

Cryptococcus neoformans and Cryptococcus deneoformans are opportunistic fungal pathogens found worldwide that are utilized to reveal mechanisms of fungal pathogenesis. However, their low homologous recombination frequency has greatly encumbered genetic studies. In preliminary work, we described a ‘suicide’ CRISPR-Cas9 system for use in the efficient gene editing of C. deneoformans, but this has not yet been used in the C. neoformans strain. The procedures involved in constructing vectors are time-consuming, whether they involve restriction enzyme-based cloning of donor DNA or the introduction of a target sequence into the gRNA expression cassette via overlap PCR, as are sophisticated, thus impeding their widespread application. Here, we report the optimized and simplified construction method for all-in-one CRISPR-Cas9 vectors that can be used in C. neoformans and C. deneoformans strains respectively, named pNK003 (Genbank: MW938321) and pRH003 (Genbank: KX977486). Taking several gene manipulations as examples, we also demonstrate the accuracy and efficiency of the new simplified all-in-one CRISPR-Cas9 genome editing tools in both Serotype A and Serotype D strains, as well as their ability to eliminate Cas9 and gDNA cassettes after gene editing. We anticipate that the availability of new vectors that can simplify and streamline the technical steps for all-in-one CRISPR-Cas9 construction could accelerate genetic studies of the Cryptococcus species.


Sign in / Sign up

Export Citation Format

Share Document