scholarly journals Focus on Cdc42 in Breast Cancer: New Insights, Target Therapy Development and Non-Coding RNAs

Cells ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 146 ◽  
Author(s):  
Yu Zhang ◽  
Jun Li ◽  
Xing-Ning Lai ◽  
Xue-Qiao Jiao ◽  
Jun-Ping Xiong ◽  
...  

Breast cancer is the most common malignant tumors in females. Although the conventional treatment has demonstrated a certain effect, some limitations still exist. The Rho guanosine triphosphatase (GTPase) Cdc42 (Cell division control protein 42 homolog) is often upregulated by some cell surface receptors and oncogenes in breast cancer. Cdc42 switches from inactive guanosine diphosphate (GDP)-bound to active GTP-bound though guanine-nucleotide-exchange factors (GEFs), results in activation of signaling cascades that regulate various cellular processes such as cytoskeletal changes, proliferation and polarity establishment. Targeting Cdc42 also provides a strategy for precise breast cancer therapy. In addition, Cdc42 is a potential target for several types of non-coding RNAs including microRNAs and lncRNAs. These non-coding RNAs is extensively involved in Cdc42-induced tumor processes, while many of them are aberrantly expressed. Here, we focus on the role of Cdc42 in cell morphogenesis, proliferation, motility, angiogenesis and survival, introduce the Cdc42-targeted non-coding RNAs, as well as present current development of effective Cdc42-targeted inhibitors in breast cancer.


2020 ◽  
Vol 21 (5) ◽  
pp. 1616 ◽  
Author(s):  
Ramoji Kosuru ◽  
Magdalena Chrzanowska

Ca2+ is a universal intracellular signal. The modulation of cytoplasmic Ca2+ concentration regulates a plethora of cellular processes, such as: synaptic plasticity, neuronal survival, chemotaxis of immune cells, platelet aggregation, vasodilation, and cardiac excitation–contraction coupling. Rap1 GTPases are ubiquitously expressed binary switches that alternate between active and inactive states and are regulated by diverse families of guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Active Rap1 couples extracellular stimulation with intracellular signaling through secondary messengers—cyclic adenosine monophosphate (cAMP), Ca2+, and diacylglycerol (DAG). Much evidence indicates that Rap1 signaling intersects with Ca2+ signaling pathways to control the important cellular functions of platelet activation or neuronal plasticity. Rap1 acts as an effector of Ca2+ signaling when activated by mechanisms involving Ca2+ and DAG-activated (CalDAG-) GEFs. Conversely, activated by other GEFs, such as cAMP-dependent GEF Epac, Rap1 controls cytoplasmic Ca2+ levels. It does so by regulating the activity of Ca2+ signaling proteins such as sarcoendoplasmic reticulum Ca2+-ATPase (SERCA). In this review, we focus on the physiological significance of the links between Rap1 and Ca2+ signaling and emphasize the molecular interactions that may offer new targets for the therapy of Alzheimer’s disease, hypertension, and atherosclerosis, among other diseases.



2021 ◽  
Vol 22 (18) ◽  
pp. 10168
Author(s):  
Lanette Kempers ◽  
Amber J. M. Driessen ◽  
Jos van Rijssel ◽  
Martijn A. Nolte ◽  
Jaap D. van Buul

Many cellular processes are controlled by small GTPases, which can be activated by guanine nucleotide exchange factors (GEFs). The RhoGEF Trio contains two GEF domains that differentially activate the small GTPases such as Rac1/RhoG and RhoA. These small RhoGTPases are mainly involved in the remodeling of the actin cytoskeleton. In the endothelium, they regulate junctional stabilization and play a crucial role in angiogenesis and endothelial barrier integrity. Multiple extracellular signals originating from different vascular processes can influence the activity of Trio and thereby the regulation of the forementioned small GTPases and actin cytoskeleton. This review elucidates how various signals regulate Trio in a distinct manner, resulting in different functional outcomes that are crucial for endothelial cell function in response to inflammation.



F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 1676 ◽  
Author(s):  
Andrew B. Goryachev ◽  
Marcin Leda

Small GTPases are organizers of a plethora of cellular processes. The time and place of their activation are tightly controlled by the localization and activation of their regulators, guanine-nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Remarkably, in some systems, the upstream regulators of GTPases are also found downstream of their activity. Resulting feedback loops can generate complex spatiotemporal dynamics of GTPases with important functional consequences. Here we discuss the concept of positive autoregulation of small GTPases by the GEF–effector feedback modules and survey recent developments in this exciting area of cell biology.



2019 ◽  
Vol 30 (15) ◽  
pp. 1846-1863 ◽  
Author(s):  
Shweta V. Pipaliya ◽  
Alexander Schlacht ◽  
Christen M. Klinger ◽  
Richard A. Kahn ◽  
Joel Dacks

Guanine nucleotide exchange factors (GEFs) are the initiators of signaling by every regulatory GTPase, which in turn act to regulate a wide array of essential cellular processes. To date, each family of GTPases is activated by distinct families of GEFs. Bidirectional membrane trafficking is regulated by ADP-ribosylation factor (ARF) GTPases and the development throughout eukaryotic evolution of increasingly complex systems of such traffic required the acquisition of a functionally diverse cohort of ARF GEFs to control it. We performed phylogenetic analyses of ARF GEFs in eukaryotes, defined by the presence of the Sec7 domain, and found three subfamilies (BIG, GBF1, and cytohesins) to have been present in the ancestor of all eukaryotes. The four other subfamilies (EFA6/PSD, IQSEC7/BRAG, FBX8, and TBS) are opisthokont, holozoan, metazoan, and alveolate/haptophyte specific, respectively, and each is derived from cytohesins. We also identified a cytohesin-derived subfamily, termed ankyrin repeat-containing cytohesin, that independently evolved in amoebozoans and members of the SAR and haptophyte clades. Building on evolutionary data for the ARF family GTPases and their GTPase-­activating proteins allowed the generation of hypotheses about ARF GEF protein function(s) as well as a better understanding of the origins and evolution of cellular complexity in eukaryotes.



2013 ◽  
Vol 59 (1) ◽  
pp. 22-27
Author(s):  
Jeffrey A. Hadwiger

Proteins with a Vps9 domain function as guanine nucleotide exchange factors for Rab proteins and can mediate the uptake of cell surface receptors or other molecules through endocytosis. However, genes encoding these proteins have not been previously studied in cells with robust chemotactic capabilities. Several genes encoding Vps9 domains were identified in the genome of Dictyostelium discoideum, and one of the genes, designated as rgfA (DDB_G0272038), was examined for functions in cell growth, development, and chemotaxis. The rgfA gene was expressed during vegetative growth and throughout development, but disruption of this gene resulted in no major alterations in cell growth, macropinocytosis, developmental morphology, or chemotactic movement. However, heterologous expression of RgfA resulted in a delay of developmental morphogenesis and impaired chemotaxis of cells to folate but did not affect macropinocytosis. These results suggest that RgfA might share redundant functions with other Dictyostelium Vps9-domain proteins and that heterologous expression of this protein can alter processes that depend on the reception of external signals.



2016 ◽  
Vol 397 (10) ◽  
pp. 1055-1069 ◽  
Author(s):  
Bhavin Shah ◽  
Andreas W. Püschel

Abstract Small GTPases are central regulators of many cellular processes. The highly conserved Rap GTPases perform essential functions in the mammalian nervous system during development and in mature neurons. During neocortical development, Rap1 is required to regulate cadherin- and integrin-mediated adhesion. In the adult nervous system Rap1 and Rap2 regulate the maturation and plasticity of dendritic spine and synapses. Although genetic studies have revealed important roles of Rap GTPases in neurons, their regulation by guanine nucleotide exchange factors (GEFs) that activate them and GTPase activating proteins (GAPs) that inactivate them by stimulating their intrinsic GTPase activity is just beginning to be explored in vivo. Here we review how GEFs and GAPs regulate Rap GTPases in the nervous system with a focus on their in vivo function.



2015 ◽  
Vol 26 (2) ◽  
pp. 238-255 ◽  
Author(s):  
Ning Wang ◽  
Mo Wang ◽  
Yi-Hua Zhu ◽  
Timothy W. Grosel ◽  
Daokun Sun ◽  
...  

Rho GTPases, activated by Rho guanine nucleotide exchange factors (GEFs), are conserved molecular switches for signal transductions that regulate diverse cellular processes, including cell polarization and cytokinesis. The fission yeast Schizosaccharomyces pombe has six Rho GTPases (Cdc42 and Rho1–Rho5) and seven Rho GEFs (Scd1, Rgf1–Rgf3, and Gef1–Gef3). The GEFs for Rho2–Rho5 have not been unequivocally assigned. In particular, Gef3, the smallest Rho GEF, was barely studied. Here we show that Gef3 colocalizes with septins at the cell equator. Gef3 physically interacts with septins and anillin Mid2 and depends on them to localize. Gef3 coprecipitates with GDP-bound Rho4 in vitro and accelerates nucleotide exchange of Rho4, suggesting that Gef3 is a GEF for Rho4. Consistently, Gef3 and Rho4 are in the same genetic pathways to regulate septum formation and/or cell separation. In gef3∆ cells, the localizations of two potential Rho4 effectors—glucanases Eng1 and Agn1—are abnormal, and active Rho4 level is reduced, indicating that Gef3 is involved in Rho4 activation in vivo. Moreover, overexpression of active Rho4 or Eng1 rescues the septation defects of mutants containing gef3∆. Together our data support that Gef3 interacts with the septin complex and activates Rho4 GTPase as a Rho GEF for septation in fission yeast.



2018 ◽  
Vol 19 (10) ◽  
pp. 2848 ◽  
Author(s):  
Anna Jaśkiewicz ◽  
Beata Pająk ◽  
Arkadiusz Orzechowski

This review addresses the issue of the numerous roles played by Rap1 GTPase (guanosine triphosphatase) in different cell types, in terms of both physiology and pathology. It is one among a myriad of small G proteins with endogenous GTP-hydrolyzing activity that is considerably stimulated by posttranslational modifications (geranylgeranylation) or guanine nucleotide exchange factors (GEFs), and inhibited by GTPase-activating proteins (GAPs). Rap1 is a ubiquitous protein that plays an essential role in the control of metabolic processes, such as signal transduction from plasma membrane receptors, cytoskeleton rearrangements necessary for cell division, intracellular and substratum adhesion, as well as cell motility, which is needed for extravasation or fusion. We present several examples of how Rap1 affects cells and organs, pointing to possible molecular manipulations that could have application in the therapy of several diseases.



Sign in / Sign up

Export Citation Format

Share Document