scholarly journals MiR-34b-5p Mediates the Proliferation and Differentiation of Myoblasts by Targeting IGFBP2

Cells ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 360 ◽  
Author(s):  
Wang ◽  
Zhang ◽  
Li ◽  
Abdalla ◽  
Chen ◽  
...  

As key post-transcriptional regulators, microRNAs (miRNAs) play an indispensable role in skeletal muscle development. Our previous study suggested that miR-34b-5p and IGFBP2 could have a potential role in skeletal muscle growth. Our goal in this study is to explore the function and regulatory mechanism of miR-34b-5p and IGFBP2 in myogenesis. In this study, the dual-luciferase reporter assay and Western blot analysis showed that IGFBP2 is a direct target of miR-34b-5p. Flow cytometric analysis and EdU assay showed that miR-34b-5p could repress the cell cycle progression of myoblasts, and miR-34b-5p could promote the formation of myotubes by promoting the expression of MyHC. On the contrary, the overexpression of IGFBP2 significantly facilitated the proliferation of myoblasts and hampered the formation of myotubes. Together, our results indicate that miR-34b-5p could mediate the proliferation and differentiation of myoblasts by targeting IGFBP2.

2015 ◽  
Vol 1 (2) ◽  
pp. 139-148
Author(s):  
Md Shahjahan

This review covers the pre- and post-natal development of skeletal muscle of vertebrate animals with cellular and molecular levels. The formation of skeletal muscle initiates from paraxial mesoderm during embryogenesis of individuals which develops somites and subsequently forms dermomyotome derived myotome to give rise axial musculature. This process (myogenesis) includes stem and progenitor cell maintenance, lineage specification, and terminal differentiation to form myofibrils consequent muscle fibers which control muscle mass and its multiplication. The main factors of muscle growth are proliferation and differentiation of myogenic cells in prenatal stage and also the growth of satellite cells at postnatal stage. There is no net increase in the number of muscle fibers in vertebrate animals after hatch or birth except fish. The development of muscle is characterized by hyperplasia and hypertrophy in prenatal and postnatal stages of individuals, respectively, through Wnt signalling pathway including environment, nutrition, sex, feed, growth and myogenic regulatory factors. Therefore further studies could elucidate new growth related genes, markers and factors to enhance meat production and enrich knowledge on muscle growth.Asian J. Med. Biol. Res. June 2015, 1(2): 139-148


Author(s):  
Yu Shi ◽  
Xudong Mao ◽  
Mingcheng Cai ◽  
Shenqiang Hu ◽  
Xiulan Lai ◽  
...  

Abstract Skeletal muscle satellite cells (SMSCs), also known as a multipotential stem cell population, play a crucial role during muscle growth and regeneration. In recent years, numerous miRNAs have been associated with the proliferation and differentiation of SMSCs in a number of mammalian species; however, the regulatory mechanisms of miR-194-5p in rabbit SMSCs still remain scarce. In this study, miR-194-5p was first observed to be highly expressed in the rabbit leg muscle. Furthermore, both the mimics and inhibitor of miR-194-5p were used to explore its role in the proliferation and differentiation of rabbit SMSCs cultured in vitro. Results from both EdU and CCK8 assays showed that miR-194-5p inhibited the proliferation of SMSCs. Meanwhile, Mef2c was identified as a target gene of miR-194-5p based on the dual-luciferase reporter assay results. In addition, upregulation of miR-194-5p decreased the expression levels of Mef2c and MyoG during rabbit SMSCs differentiation on Days 3 and 7 of in vitro culture. Taken together, these data demonstrated that miR-194-5p negatively regulates the proliferation and differentiation of rabbit SMSCs by targeting Mef2c.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 5485-5485
Author(s):  
Hesham Hassan ◽  
Michelle Varney ◽  
Bhavana J Dave ◽  
Rakesh K Singh

Abstract Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin lymphoma (NHL).Despite long-term remission achieved with R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisolone), relapse occurs in almost one third of the patients. Therefore, there is a need for novel therapeutic targets that are relevant to DLBCL pathogenesis. TP73 gene is a member of the p53 tumor suppressor gene family, which is critical in the regulation of cell cycle and apoptosis. TP73 is located in distal 1p36 chromosomal region that is commonly disrupted in DLBCL. Our previous studies had shown that the differential expression of p73 isoforms correlates with proliferation and apoptosis in DLBCL patient specimens. Furthermore, the experimental modulation of p73 isoforms using expression vectors or siRNA modulates the behavior and regulate the chemotherapeutic response of DLBCL cell line models. Diclofenac is NSAID that has been shown to increase p73 activity, substitute p53 activity and suppress the growth of neuroblastoma. In the present study, we investigated whether diclofenac modulates DLBCL apoptosis and cell cycle progression independent of p53 status. We used cell line models of the GCB-DLBCL (DHL-16 and OCI-Ly7) and the ABC-DLBCL (OCI-Ly3 and Pfeiffer). Because OCI-Ly7 and Pfeiffer have a mutant p53, these cells can model the activity of diclofenac in the presence of mutant p53. We used MTT assay to study the response of the DLBCL cells to various concentrations of diclofenac (25, 50, 100, 150, 200, 250 µM) and at different time points (24, 48, and 72 hours). To decipher the biological effects of diclofenac treatment on DLBCL cells Hema-3 staining was done to visualize morphologic evidence of cell death; propidium iodide-based flow cytometric analysis for cell cycle progression; BrdU incorporation for proliferation; and Annexin-V-Flous flow cytometric analysis for apoptosis. Molecularly, Caspase-GLO assay was used for evaluation of Caspase-3, 7, 8 activity and qRT-PCR was used to estimate the effect of diclofenac treatment on p73 and the p53 family transcriptional target regulating cell cycle (p21) and apoptosis (PUMA, NOXA, BIM, and CD95). Mann-Whitney (for two groups) or ANOVA (for more than two groups) analyses were used to determine the statistical significance for comparisons between different treatment groups. Diclofenac treatment displayed a concentration and duration-dependent suppressive cell proliferative activity against a panel of DLBCL cells independent of p53 status including experimental therapy-resistant models. Diclofenac treatment resulted in cell cycle arrest mainly at the G2/M phase, decreased proliferation, and caused profound cell death (mainly apoptosis and possibly necroptosis). Molecularly, diclofenac treatment was associated with increased activity of caspases- 3, -7 and -8. Increased p53 pathway activity as suggested by induction of expression of a panel of p53 transcriptional targets including the cell cycle regulatory molecule p21 and the pro-apoptotic molecules, PUMA, NOXA, BIM, and CD95, was detected in diclofenac treated DLBCL cells. More importantly diclofenac treatment was associated with enhanced expression of the pro-apoptotic isoforms of the p53 homologue, TAp73. Together, our data demonstrate that clinically non-toxic doses of diclofenac treatment, induces apoptosis and cell cycle arrest of both GCB and ABC-DLBCL cells independent of p53 status and is associated with increased expression of the p73 homologue TAp73. These data highlight the potential of diclofenac as a novel adjuvant therapy in DLBCL. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Vol 20 (18) ◽  
pp. 4617 ◽  
Author(s):  
Paula Renee Chen ◽  
Yeunsu Suh ◽  
Sangsu Shin ◽  
Rachel Marie Woodfint ◽  
Seongsoo Hwang ◽  
...  

Myostatin (MSTN) negatively regulates muscle growth and development through inhibiting myoblast proliferation and differentiation. Five alternative splicing isoforms of MSTN (MSTN-A to MSTN-E) have been discovered in domestic avian species. MSTN-A has high expression in skeletal muscle and encodes the full-length peptide with anti-myogenic activity. Another isoform, MSTN-B, is also highly expressed in skeletal muscle and encodes a truncated peptide that has pro-myogenic capabilities in vitro, which include promoting the proliferation and differentiation of quail muscle precursor cells. The objective of this study was to investigate overexpression of MSTN-B in vivo by using two independent lines of transgenic Japanese quail with expression directed in the skeletal muscle. Unexpectedly, the chicken skeletal muscle alpha actin 1 (cACTA1) promoter resulted in restricted exogenous MSTN-B protein expression to certain skeletal muscles, such as the gastrocnemius and tibialis anterior, but not the pectoralis major muscle. Gastrocnemius weight as a percentage of body weight in transgenic quail was increased compared to non-transgenic quail at posthatch day 21 (D21) and posthatch D42. An increase in the size of the gastrocnemius in transgenic quail was attributed to an increase in fiber number but not fiber cross-sectional area (CSA). During embryonic development, paired box 7 (PAX7) expression was prolonged in the transgenic embryos, but other myogenic regulatory factors (MRFs) were unchanged after MSTN-B overexpression. Taken together, these data provide novel insights into the regulation of skeletal muscle development by alternative splicing mechanisms in avians.


Genes ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 369 ◽  
Author(s):  
Xinao Cao ◽  
Shuyue Tang ◽  
Fei Du ◽  
Hao Li ◽  
Xiaoxu Shen ◽  
...  

Noncoding RNAs, especially microRNAs (miRNAs), have been reported to play important roles during skeletal muscle development and regeneration. Our previous sequencing data revealed that miR-99a-5p is one of the most abundant miRNAs in chicken breast muscle. The purpose of this study was to reveal the regulatory mechanism of miR-99a-5p in the proliferation and differentiation of chicken skeletal muscle satellite cells (SMSCs). Through the investigation of cell proliferation activity, cell cycle progression, and 5-ethynyl-29-deoxyuridine (EdU) assay, we found that miR-99a-5p can significantly promote the proliferation of SMSCs. Moreover, we found that miR-99a-5p can inhibit myotube formation by decreasing the expression of muscle cell differentiation marker genes. After miR-99a-5p target gene scanning, we confirmed that miR-99a-5p directly targets the 3′ untranslated region (UTR) of myotubularin-related protein 3 (MTMR3) and regulates its expression level during chicken SMSC proliferation and differentiation. We also explored the role of MTMR3 in muscle development and found that its knockdown significantly facilitates the proliferation but represses the differentiation of SMSCs, which is opposite to the effects of miR-99a-5p. Overall, we demonstrated that miR-99a-5p regulates the proliferation and differentiation of SMSCs by targeting MTMR3.


Parasitology ◽  
1989 ◽  
Vol 99 (3) ◽  
pp. 333-339 ◽  
Author(s):  
G. F. Hoyne ◽  
P. F.L. Boreham ◽  
P. G. Parsons ◽  
C. Ward ◽  
B. Biggs

SummaryFlow cytometric analysis of the binucleated protozoan parasiteGiardia intestinalisgave DNA histograms with a broad Gl peak and a definable G2 + M peak with twice the DNA content of Gl. Twenty-four hour treatment with metronidazole arrested cell cycle progression of susceptible trophozoites in the G2 + M phase, but had no effect, even at toxic doses, on the DNA histogram of a line selected for resistance to metronidazole. Furazolidone was inhibitory to both stocks, causing an arrest in the S and G2 + M phases. Inhibitors of the mammalian cell cycle were also tested. Hydroxyurea, which blocks mammalian cells in Gl/S, and razoxane, which blocks in G2 + M, arrested trophozoites in the G2 + M phase whereas colchicine and gamma-irradiation had little or no effect on the cell cycle ofG. intestinalis. These results suggest that the cell cycle ofG. intestinalismay be controlled in a different manner from mammalian cells.


Genes ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1400
Author(s):  
Yanjun Duan ◽  
Yulin Wu ◽  
Xuemei Yin ◽  
Tingting Li ◽  
Fuxiang Chen ◽  
...  

The proliferation and differentiation of myoblasts is an important process of skeletal muscle development. In this process, microRNAs (miRNAs) play an important role in the proliferation and differentiation of chicken primary myoblasts (CPMs). Our previous study found that miR-214 and the tRNA methyltransferase 61A (TRMT61A) gene were differentially expressed in different stages of proliferation and differentiation. Therefore, this study aimed to explore the effect of miR-214 on the proliferation and differentiation of CPMs and the functional relationship between miR-214 and TRMT61A. In this study, we detected the effect of miR-214 on the proliferation of CPMs by qPCR, flow cytometry, CCK-8, and EdU after the overexpression and interference of miR-214. qPCR, Western blotting, and indirect immunofluorescence were used to detect the effect of miR-214 on the differentiation of the CPMs. The expression patterns of miR-214 and TRMT61A were observed at different time points of differentiation induced by the CPMs. The results show that miR-214 inhibited the proliferation of the CPMs and promoted the differentiation of the CPMs. The Dual-Luciferase Reporter assay and the expression pattern of miR-214 and TRMT61A suggested that they had a negative regulatory target relationship. This study revealed the function and regulatory mechanism of miR-214 in the proliferation and differentiation of CPMs.


Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 835
Author(s):  
Mohammadreza Mohammadabadi ◽  
Farhad Bordbar ◽  
Just Jensen ◽  
Min Du ◽  
Wei Guo

Farm-animal species play crucial roles in satisfying demands for meat on a global scale, and they are genetically being developed to enhance the efficiency of meat production. In particular, one of the important breeders’ aims is to increase skeletal muscle growth in farm animals. The enhancement of muscle development and growth is crucial to meet consumers’ demands regarding meat quality. Fetal skeletal muscle development involves myogenesis (with myoblast proliferation, differentiation, and fusion), fibrogenesis, and adipogenesis. Typically, myogenesis is regulated by a convoluted network of intrinsic and extrinsic factors monitored by myogenic regulatory factor genes in two or three phases, as well as genes that code for kinases. Marker-assisted selection relies on candidate genes related positively or negatively to muscle development and can be a strong supplement to classical selection strategies in farm animals. This comprehensive review covers important (candidate) genes that regulate muscle development and growth in farm animals (cattle, sheep, chicken, and pig). The identification of these genes is an important step toward the goal of increasing meat yields and improves meat quality.


Sign in / Sign up

Export Citation Format

Share Document