scholarly journals Agenesis and Hypomyelination of Corpus Callosum in Mice Lacking Nsun5, an RNA Methyltransferase

Cells ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 552 ◽  
Author(s):  
Zihao Yuan ◽  
Peipei Chen ◽  
Tingting Zhang ◽  
Bin Shen ◽  
Ling Chen

Williams-Beuren syndrome (WBS) is caused by microdeletions of 28 genes and is characterized by cognitive disorder and hypotrophic corpus callosum (CC). Nsun5 gene, which encodes cytosine-5 RNA methyltransferase, is located in the deletion loci of WBS. We have reported that single-gene knockout of Nsun5 (Nsun5-KO) in mice impairs spatial cognition. Herein, we report that postnatal day (PND) 60 Nsun5-KO mice showed the volumetric reduction of CC with a decline in the number of myelinated axons and loose myelin sheath. Nsun5 was highly expressed in callosal oligodendrocyte precursor cells (OPCs) and oligodendrocytes (OLs) from PND7 to PND28. The numbers of OPCs and OLs in CC of PND7-28 Nsun5-KO mice were significantly reduced compared to wild-type littermates. Immunohistochemistry and Western blot analyses of myelin basic protein (MBP) showed the hypomyelination in the CC of PND28 Nsun5-KO mice. The Nsun5 deletion suppressed the proliferation of OPCs but did not affect transition of radial glial cells into OPCs or cell cycle exit of OPCs. The protein levels, rather than transcriptional levels, of CDK1, CDK2 and Cdc42 in the CC of PND7 and PND14 Nsun5-KO mice were reduced. These findings point to the involvement of Nsun5 deletion in agenesis of CC observed in WBS.

1998 ◽  
Vol 111 (14) ◽  
pp. 1951-1961 ◽  
Author(s):  
M.J. Marvin ◽  
J. Dahlstrand ◽  
U. Lendahl ◽  
R.D. McKay

Neuroepithelial and radial glial cells span between the ventricular and the pial surfaces of the neural tube and express two intermediate filaments (IFs), nestin and vimentin, which form a filamentous network throughout the length of the cells. In this report we study the polymerization characteristics of nestin and examine how mutations affect the assembly and localization of the nestin protein in cultured cells and in the developing CNS of transgenic mice. A wild-type rat nestin gene transfected into the IF-free SW13 cell line failed to assemble into a filamentous network but was incorporated into the existing IF network of a subclone expressing vimentin, demonstrating that nestin requires vimentin for proper assembly. In transgenic mice, rat nestin formed a network indistinguishable from that formed by endogenous nestin and vimentin, but a mutant form lacking five amino acids at the carboxy terminus of the rod domain was largely restricted to the pial endfeet. Since nestin mRNA is localized to the pial endfoot region we propose that both transgenes are translated there, but that the wild-type protein is preferentially incorporated into the IF network. These observations provide evidence for hierarchical assembly and a complex organization of the IF network along the ventricular-pial axis in the early CNS.


Author(s):  
Hanrong Wang ◽  
Youran Li ◽  
Fengxu Xiao ◽  
Yupeng Zhang ◽  
Guiyang Shi ◽  
...  

Amino acid efflux and influx transport systems play vital roles in industrial microorganisms’ cell growth and metabolism. However, although biochemically characterized, most amino acid transporters remain unknown at the molecular level in Bacillus licheniformis. This study focuses on the molecular and functional characterizations of three transporters, YdgF, YvbW, and YveA, mainly when catalyzing the cross-membrane flux of L-Aspartate. When growing in the minimal medium with L-Asp as the only carbon and nitrogen source, the growth of strains lacking proteins YdgF, YvbW, and YveA was significantly inhibited compared with wild-type strains, while supplementing the expression of the corresponding proteins in the single-gene knockout strains can alleviate the inhibition to some extent. Upon overexpression, the recombinant proteins mediate the accumulation of L-aspartate to varying degrees. Compared with wild-type strains, the single knockout strains of the three protein genes exhibited reduced absorption of L-aspartate. In addition, this paper focuses on the effects of these three proteins on the absorption of β-alanine, L-glutamate, D-serine, D-alanine, and glycine.


Microbiology ◽  
2021 ◽  
Author(s):  
Jesus Enrique Salcedo-Sora ◽  
Srijan Jindal ◽  
Steve O'Hagan ◽  
Douglas B. Kell

Our previous work demonstrated that two commonly used fluorescent dyes that were accumulated by wild-type Escherichia coli MG1655 were differentially transported in single-gene knockout strains, and also that they might be used as surrogates in flow cytometric transporter assays. We summarize the desirable properties of such stains, and here survey 143 candidate dyes. We eventually triage them (on the basis of signal, accumulation levels and cost) to a palette of 39 commercially available and affordable fluorophores that are accumulated significantly by wild-type cells of the ‘Keio’ strain BW25113, as measured flow cytometrically. Cheminformatic analyses indicate both their similarities and their (much more considerable) structural differences. We describe the effects of pH and of the efflux pump inhibitor chlorpromazine on the accumulation of the dyes. Even the ‘wild-type’ MG1655 and BW25113 strains can differ significantly in their ability to take up such dyes. We illustrate the highly differential uptake of our dyes into strains with particular lesions in, or overexpressed levels of, three particular transporters or transporter components (yhjV, yihN and tolC). The relatively small collection of dyes described offers a rapid, inexpensive, convenient and informative approach to the assessment of microbial physiology and phenotyping of membrane transporter function.


Author(s):  
Jesus Enrique Salcedo-Sora ◽  
Srijan Jindal ◽  
Steve O’Hagan ◽  
Douglas B. Kell

AbstractOur previous work had demonstrated that two commonly used fluorescent dyes that were accumulated by wild-type E. coli MG1655 were accumulated differentially in single-gene knockout strains, and also that they might be used as surrogates in flow cytometric transporter assays. We summarise the desirable properties of such stains, and here survey 143 candidate dyes. We triage them eventually (on the basis of signal, accumulation levels, and cost) to a palette of 39 commercially available and affordable fluorophores that are accumulated significantly by wild-type cells of the ‘Keio’ strain BW25113, as measured flow cytometrically. Cheminformatic analyses indicate both their similarities and their (much more considerable) structural differences. We describe the effects of pH and of the efflux pump inhibitor chlorpromazine on the accumulation. Even the ‘wild-type’ MG1655 and BW25113 strains can differ significantly in their ability to take up such dyes. We illustrate the highly differential uptake of our dyes into strains with particular lesions in, or overexpressed levels of, three particular transporters or transporter components (yhjV, yihN, and tolC). The relatively small collection of dyes described offers a rapid, inexpensive, convenient and valuable approach to the assessment of microbial physiology and transporter function.


Fermentation ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 22
Author(s):  
Hanrong Wang ◽  
Youran Li ◽  
Fengxu Xiao ◽  
Yupeng Zhang ◽  
Guiyang Shi ◽  
...  

Amino acid efflux and influx transport systems play vital roles in industrial microorganisms’ cell growth and metabolism. However, although biochemically characterized, most of them remain unknown at the molecular level in Bacillus licheniformis. In this study, three proteins, namely, YdgF, YvbW, and YveA, were predicted to be involved in the active transport of L-aspartate (L-Asp). This was verified by manipulating their encoding genes. When growing in the minimal medium with L-Asp as the only carbon and nitrogen source, the growth of strains lacking proteins YdgF, YvbW, and YveA was significantly inhibited compared with the wild-type strains, while supplementing the expression of the corresponding proteins in the single-gene knockout strains could alleviate the inhibition. Upon overexpression, the recombinant proteins mediated the accumulation of L-aspartate to varying degrees. Compared with the wild-type strains, the single knockout strains of the three protein genes exhibited reduced absorption of L-aspartate. In addition, this study focused on the effects of these three proteins on the absorption of β-alanine, L-glutamate, D-serine, D-alanine, and glycine.


2021 ◽  
Vol 34 (1) ◽  
pp. 121-122
Author(s):  
Yi-quan Dai ◽  
Xiao-xiao Yan ◽  
Yi-chen Lin ◽  
Hong-yu Chen ◽  
Xiao-ru Liu

Abstract Background To investigate the function of transient receptor potential melastatin 2 (TRPM2) in vascular reactivity induced by 5-hydroxytryptamine (5-HT) in the aorta during development of atherosclerosis in mice. Methods Forty mice were randomly divided into 4 groups: C57BL/6J on normal diet (C57 + ND), C57BL/6J on high-fat diet (C57 + HFD), apolipoprotein E gene knockout mice (ApoE−/−) on ND (ApoE−/− + ND), and ApoE−/− on HFD (ApoE−/− + HFD). They were fed with a ND or HFD for 16 weeks. Aortic TRPM2 expression and isometric contractions were analyzed. Results In the ApoE−/− + HFD group, body weight, blood glucose, and blood lipid concentrations were increased, and aortic plaques were developed. Compared with the other 3 groups, aortic TRPM2 mRNA and protein levels were significantly increased in the ApoE−/− + HFD group (P < 0.01). Aortic reactivity to 5-HT was enhanced in ApoE−/− + HFD mice with lower EC50 values. The enhanced reactivity to 5-HT was significantly inhibited by TRPM2 inhibitors, N-p-amylcinnamoyl anthranilic acid (1 µmol/l) and 2-aminoethyl diphenylborinate (10 µmol/l). Conclusions Aortic TRPM2 expression is upregulated in ApoE knockout mice fed with a HFD. Upregulation of TRPM2 enhances 5-HT vascular reactivity during development of atherosclerosis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lidan Liu ◽  
Chaim Z. Aron ◽  
Cullen M. Grable ◽  
Adrian Robles ◽  
Xiangli Liu ◽  
...  

AbstractLevels of intestinal toll-like receptor 4 (TLR4) impact inflammation in the neonatal gastrointestinal tract. While surfactant protein A (SP-A) is known to regulate TLR4 in the lung, it also reduces intestinal damage, TLR4 and inflammation in an experimental model of necrotizing enterocolitis (NEC) in neonatal rats. We hypothesized that SP-A-deficient (SP-A−/−) mice have increased ileal TLR4 and inflammatory cytokine levels compared to wild type mice, impacting intestinal physiology. We found that ileal TLR4 and proinflammatory cytokine levels were significantly higher in infant SP-A−/− mice compared to wild type mice. Gavage of neonatal SP-A−/− mice with purified SP-A reduced ileal TLR4 protein levels. SP-A reduced expression of TLR4 and proinflammatory cytokines in normal human intestinal epithelial cells (FHs74int), suggesting a direct effect. However, incubation of gastrointestinal cell lines with proteasome inhibitors did not abrogate the effect of SP-A on TLR4 protein levels, suggesting that proteasomal degradation is not involved. In a mouse model of experimental NEC, SP-A−/− mice were more susceptible to intestinal stress resembling NEC, while gavage with SP-A significantly decreased ileal damage, TLR4 and proinflammatory cytokine mRNA levels. Our data suggests that SP-A has an extrapulmonary role in the intestinal health of neonatal mice by modulating TLR4 and proinflammatory cytokines mRNA expression in intestinal epithelium.


Genetics ◽  
1972 ◽  
Vol 72 (3) ◽  
pp. 411-417
Author(s):  
C W H Partridge ◽  
Mary E Case ◽  
Norman H Giles

ABSTRACT A color test has been developed for the selection and identification of mutants in Neurospora crassa, constitutive for the three normally inducible enzymes which convert quinate to protocatechuate. By this means seven such mutants have been recovered after ultra violet irradiation of wild type and have been shown to be allelic (or very closely linked) to the qa-1C mutants previously obtained by other means. Thus, the regulation of the synthesis of these three catabolic enzymes is indicated to be under the control of a single gene, qa-1+.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Nassir U. Al-Khishman ◽  
Qi Qi ◽  
Austyn D. Roseborough ◽  
Alexander Levit ◽  
Brian L. Allman ◽  
...  

Abstract Background Accurate and sensitive imaging biomarkers are required to study the progression of white matter (WM) inflammation in neurodegenerative diseases. Radioligands targeting the translocator protein (TSPO) are considered sensitive indicators of neuroinflammation, but it is not clear how well the expression of TSPO coincides with major histocompatibility complex class II (MHCII) molecules in WM. This study aimed to test the ability of TSPO to detect activated WM microglia that are immunohistochemically positive for MHCII in rat models of prodromal Alzheimer’s disease and acute subcortical stroke. Methods Fischer 344 wild-type (n = 12) and TgAPP21 (n = 11) rats were imaged with [18F]FEPPA PET and MRI to investigate TSPO tracer uptake in the corpus callosum, a WM region known to have high levels of MHCII activated microglia in TgAPP21 rats. Wild-type rats subsequently received an endothelin-1 (ET1) subcortical stroke and were imaged at days 7 and 28 post-stroke before immunohistochemistry of TSPO, GFAP, iNOS, and the MHCII rat antigen, OX6. Results [18F]FEPPA PET was not significantly affected by genotype in WM and only detected increases near the ET1 infarct (P = 0.033, infarct/cerebellum uptake ratio: baseline = 0.94 ± 0.16; day 7 = 2.10 ± 0.78; day 28 = 1.77 ± 0.35). Immunohistochemistry confirmed that only the infarct (TSPO cells/mm2: day 7 = 555 ± 181; day 28 = 307 ± 153) and WM that is proximal to the infarct had TSPO expression (TSPO cells/mm2: day 7 = 113 ± 93; day 28 = 5 ± 7). TSPO and iNOS were not able to detect the chronic WM microglial activation that was detected with MHCII in the contralateral corpus callosum (day 28 OX6% area: saline = 0.62 ± 0.38; stroke = 4.30 ± 2.83; P = .029). Conclusion TSPO was only expressed in the stroke-induced insult and proximal tissue and therefore was unable to detect remote and non-insult-related chronically activated microglia overexpressing MHCII in WM. This suggests that research in neuroinflammation, particularly in the WM, would benefit from MHCII-sensitive radiotracers.


2021 ◽  
Vol 7 (11) ◽  
pp. eabe7920
Author(s):  
Meihui Song ◽  
Binyuan Zhai ◽  
Xiao Yang ◽  
Taicong Tan ◽  
Ying Wang ◽  
...  

Meiotic chromosomes have a loop/axis architecture, with axis length determining crossover frequency. Meiosis-specific Pds5 depletion mutants have shorter chromosome axes and lower homologous chromosome pairing and recombination frequency. However, it is poorly understood how Pds5 coordinately regulates these processes. In this study, we show that only ~20% of wild-type level of Pds5 is required for homolog pairing and that higher levels of Pds5 dosage-dependently regulate axis length and crossover frequency. Moderate changes in Pds5 protein levels do not explicitly impair the basic recombination process. Further investigations show that Pds5 does not regulate chromosome axes by altering Rec8 abundance. Conversely, Rec8 regulates chromosome axis length by modulating Pds5. These findings highlight the important role of Pds5 in regulating meiosis and its relationship with Rec8 to regulate chromosome axis length and crossover frequency with implications for evolutionary adaptation.


Sign in / Sign up

Export Citation Format

Share Document