scholarly journals Isoform-Specific Roles of ERK1 and ERK2 in Arteriogenesis

Cells ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 38 ◽  
Author(s):  
Nicolas Ricard ◽  
Jiasheng Zhang ◽  
Zhen W. Zhuang ◽  
Michael Simons

Despite the clinical importance of arteriogenesis, this biological process is poorly understood. ERK1 and ERK2 are key components of a major intracellular signaling pathway activated by vascular endothelial growth (VEGF) and FGF2, growth factors critical to arteriogenesis. To investigate the specific role of each ERK isoform in arteriogenesis, we used mice with a global Erk1 knockout as well as Erk1 and Erk2 floxed mice to delete Erk1 or Erk2 in endothelial cells, macrophages, and smooth muscle cells. We found that ERK1 controls macrophage infiltration following an ischemic event. Loss of ERK1 in endothelial cells and macrophages induced an excessive macrophage infiltration leading to an increased but poorly functional arteriogenesis. Loss of ERK2 in endothelial cells leads to a decreased arteriogenesis due to decreased endothelial cell proliferation and a reduced eNOS expression. These findings show for the first time that isoform-specific roles of ERK1 and ERK2 in the control of arteriogenesis.

2001 ◽  
Vol 281 (1) ◽  
pp. H22-H29 ◽  
Author(s):  
Xuping Bao ◽  
Chuanyi Lu ◽  
John A. Frangos

The aim of the current study was to investigate the intracellular signaling cascade that leads to temporal gradients in shear (TGS)-induced endothelial cell proliferation, with a focus on the involvement of extracellular signal-regulated kinases 1 and 2 (ERK1/2). With the use of well-defined pulsatile, impulse, step, and ramp laminar flow profiles, we found that TGS (impulse flow and pulsatile flow) induced an enhanced and sustained (>30 min) phosphorylation of ERK1/2 relative to step flow (which contains a step increase in shear followed by steady shear), whereas steady shear (ramp flow) alone downregulated activated ERK1/2. Nitric oxide (NO) was found to mediate both the stimulatory effect of TGS and the inhibitory effect of steady shear on endothelial ERK1/2 phosphorylation. Reactive oxygen species (ROS) were also demonstrated to be associated with TGS-induced ERK1/2 phosphorylation. Both Gq/11 and Gi3 were necessary for the activation of ERK1/2 by TGS. Finally, the TGS-induced endothelial proliferative response was abolished by ERK1/2 inhibition. Our study demonstrated the essential role of G proteins, NO, and ROS in TGS-dependent ERK1/2 activation and proliferative response in vascular endothelial cells.


Reproduction ◽  
2005 ◽  
Vol 129 (6) ◽  
pp. 765-777 ◽  
Author(s):  
Lisa M Walter ◽  
Peter A W Rogers ◽  
Jane E Girling

The role of progesterone (and oestrogen) in endometrial angiogenesis remains controversial. The aims of this study were to quantify endometrial angiogenesis in pregnant mice and to investigate the role of progesterone in promoting endothelial cell proliferation in ovariectomized mice. Uteri were collected on days 1 to 4 of pregnancy when circulating progesterone concentrations were increasing, prior to implantation. Before dissection, mice were injected with bromodeoxyuridine (BrdU) enabling proliferating endothelial cells to be quantified with CD31/BrdU double-immunohistochemistry. There was a significant increase in proliferating endothelial cells on day 3 of pregnancy when plasma progesterone also increased. To determine if this endothelial cell proliferation was due to progesterone, an experiment was performed on ovariectomised mice. One group was treated with a single oestradiol injection on day 8 after ovariectomy, followed by a no-treatment day and three consecutive daily injections of progesterone. Other groups were treated with either the vehicle, oestradiol or progesterone injections only; all were dissected on day 13 following ovariectomy. Unexpectedly, mice treated with progesterone-only had the highest amount of endothelial cell proliferation and oestrogen priming was found to significantly reduce this progesterone-induced endothelial cell proliferation. To determine if this proliferation is mediated by vascular endothelial growth factor (VEGF), a further experiment in which VEGF anti-serum was administered concurrently with the progesterone injections was performed. Endothelial cell proliferation was reduced but not abolished suggesting progesterone-induced endometrial angiogenesis is only partly mediated by VEGF. Results indicate that oestrogen priming is not required for progesterone to stimulate endometrial endothelial cell proliferation and that oestrogen inhibits progesterone-induced angiogenesis in ovariectomised mice.


2017 ◽  
Vol 63 (4) ◽  
pp. 545-556
Author(s):  
Natalya Oskina ◽  
Aleksandr Shcherbakov ◽  
Maksim Filipenko ◽  
Nikolay Kushlinskiy ◽  
L. Ovchinnikova

Currently it is established that cancer is a genetic disease and that somatic mutations are the initiators of the carcinogenic process. The PI3K/AKT/mTOR pathway is an important intracellular signaling pathway regulating the cell growth and metabolic activities. Aberrant activation of the PI3K pathway is commonly observed in many different cancers. In this review we analyze the genetic alterations of PI3K pathway in a variety of human malignancies and discuss their possible implications for diagnosis and therapy.


2021 ◽  
Vol 22 (6) ◽  
pp. 2804
Author(s):  
Yasuo Yoshitomi ◽  
Takayuki Ikeda ◽  
Hidehito Saito-Takatsuji ◽  
Hideto Yonekura

Blood vessels are essential for the formation and maintenance of almost all functional tissues. They play fundamental roles in the supply of oxygen and nutrition, as well as development and morphogenesis. Vascular endothelial cells are the main factor in blood vessel formation. Recently, research findings showed heterogeneity in vascular endothelial cells in different tissue/organs. Endothelial cells alter their gene expressions depending on their cell fate or angiogenic states of vascular development in normal and pathological processes. Studies on gene regulation in endothelial cells demonstrated that the activator protein 1 (AP-1) transcription factors are implicated in angiogenesis and vascular development. In particular, it has been revealed that JunB (a member of the AP-1 transcription factor family) is transiently induced in endothelial cells at the angiogenic frontier and controls them on tip cells specification during vascular development. Moreover, JunB plays a role in tissue-specific vascular maturation processes during neurovascular interaction in mouse embryonic skin and retina vasculatures. Thus, JunB appears to be a new angiogenic factor that induces endothelial cell migration and sprouting particularly in neurovascular interaction during vascular development. In this review, we discuss the recently identified role of JunB in endothelial cells and blood vessel formation.


2001 ◽  
Vol 168 (3) ◽  
pp. 409-416 ◽  
Author(s):  
SE Dickson ◽  
R Bicknell ◽  
HM Fraser

Vascular endothelial growth factor (VEGF) is essential for the angiogenesis required for the formation of the corpus luteum; however, its role in ongoing luteal angiogenesis and in the maintenance of the established vascular network is unknown. The aim of this study was to determine whether VEGF inhibition could intervene in ongoing luteal angiogenesis using immunoneutralisation of VEGF starting in the mid-luteal phase. In addition, the effects on endothelial cell survival and the recruitment of periendothelial support cells were examined. Treatment with a monoclonal antibody to VEGF, or mouse gamma globulin for control animals, commenced on day 7 after ovulation and continued for 3 days. Bromodeoxyuridine (BrdU), used to label proliferating cells to obtain a proliferation index, was administered one hour before collecting ovaries from control and treated animals. Ovarian sections were stained using antibodies to BrdU, the endothelial cell marker, CD31, the pericyte marker, alpha-smooth muscle actin, and 3' end DNA fragments as a marker for apoptosis. VEGF immunoneutralisation significantly suppressed endothelial cell proliferation and the area occupied by endothelial cells while increasing pericyte coverage and the incidence of endothelial cell apoptosis. Luteal function was markedly compromised by anti-VEGF treatment as judged by a 50% reduction in plasma progesterone concentration. It is concluded that ongoing angiogenesis in the mid-luteal phase is primarily driven by VEGF, and that a proportion of endothelial cells of the mid-luteal phase vasculature are dependent on VEGF support.


2014 ◽  
Vol 222 (1) ◽  
pp. R11-R24 ◽  
Author(s):  
Syed Jalal Khundmiri

Cardiotonic steroids have been used for the past 200 years in the treatment of congestive heart failure. As specific inhibitors of membrane-bound Na+/K+ATPase, they enhance cardiac contractility through increasing myocardial cell calcium concentration in response to the resulting increase in intracellular Na concentration. The half-minimal concentrations of cardiotonic steroids required to inhibit Na+/K+ATPase range from nanomolar to micromolar concentrations. In contrast, the circulating levels of cardiotonic steroids under physiological conditions are in the low picomolar concentration range in healthy subjects, increasing to high picomolar levels under pathophysiological conditions including chronic kidney disease and heart failure. Little is known about the physiological function of low picomolar concentrations of cardiotonic steroids. Recent studies have indicated that physiological concentrations of cardiotonic steroids acutely stimulate the activity of Na+/K+ATPase and activate an intracellular signaling pathway that regulates a variety of intracellular functions including cell growth and hypertrophy. The effects of circulating cardiotonic steroids on renal salt handling and total body sodium homeostasis are unknown. This review will focus on the role of low picomolar concentrations of cardiotonic steroids in renal Na+/K+ATPase activity, cell signaling, and blood pressure regulation.


2008 ◽  
Vol 295 (2) ◽  
pp. E313-E322 ◽  
Author(s):  
Can Pang ◽  
Zhanguo Gao ◽  
Jun Yin ◽  
Jin Zhang ◽  
Weiping Jia ◽  
...  

The biological role of macrophage infiltration into adipose tissue in obesity remains to be fully understood. We hypothesize that macrophages may act to stimulate angiogenesis in the adipose tissue. This possibility was examined by determining macrophage expression of angiogenic factor PDGF (platelet-derived growth factor) and regulation of tube formation of endothelial cells by PDGF. The data suggest that endothelial cell density was reduced in the adipose tissue of ob/ob mice. Expression of endothelial marker CD31 was decreased in protein and mRNA. The reduction was associated with an increase in macrophage infiltration. In the obese mice, PDGF concentration was elevated in the plasma, and its mRNA expression was increased in adipose tissue. Macrophages were found to be a major source of PDGF in adipose tissue, as deletion of macrophages led to a significant reduction in PDGF mRNA. In cell culture, PDGF expression was induced by hypoxia, and tube formation of endothelial cells was induced by PDGF. The PDGF activity was dependent on S6K, as inhibition of S6K in endothelial cells led to inhibition of the PDGF activity. We conclude that, in response to the reduced vascular density, macrophages may express PDGF in adipose tissue to facilitate capillary formation in obesity. Although the PDGF level is elevated in adipose tissue, its activity in angiogenesis is dependent on the availability of sufficient endothelial cells. The study suggests a new function of macrophages in the adipose tissue in obesity.


Sign in / Sign up

Export Citation Format

Share Document