scholarly journals Disruption of Beta-Cell Mitochondrial Networks by the Orphan Nuclear Receptor Nor1/Nr4a3

Cells ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 168 ◽  
Author(s):  
Anne-Françoise Close ◽  
Nidheesh Dadheech ◽  
Hélène Lemieux ◽  
Qian Wang ◽  
Jean Buteau

Nor1, the third member of the Nr4a subfamily of nuclear receptor, is garnering increased interest in view of its role in the regulation of glucose homeostasis. Our previous study highlighted a proapoptotic role of Nor1 in pancreatic beta cells and showed that Nor1 expression was increased in islets isolated from type 2 diabetic individuals, suggesting that Nor1 could mediate the deterioration of islet function in type 2 diabetes. However, the mechanism remains incompletely understood. We herein investigated the subcellular localization of Nor1 in INS832/13 cells and dispersed human beta cells. We also examined the consequences of Nor1 overexpression on mitochondrial function and morphology. Our results show that, surprisingly, Nor1 is mostly cytoplasmic in beta cells and undergoes mitochondrial translocation upon activation by proinflammatory cytokines. Mitochondrial localization of Nor1 reduced glucose oxidation, lowered ATP production rates, and inhibited glucose-stimulated insulin secretion. Western blot and microscopy images revealed that Nor1 could provoke mitochondrial fragmentation via mitophagy. Our study unveils a new mode of action for Nor1, which affects beta-cell viability and function by disrupting mitochondrial networks.

2020 ◽  
Vol 68 (10) ◽  
pp. 691-702
Author(s):  
Gladys Teitelman

In pancreatic beta cells, proinsulin (ProIN) undergoes folding in endoplasmic reticulum/Golgi system and is translocated to secretory vesicles for processing into insulin and C-peptide by the proprotein convertases (PC)1/3 and PC2, and carboxypeptidase E. Human beta cells show significant variation in the level of expression of PC1/3, the critical proconvertase involved in proinsulin processing. To ascertain whether this heterogeneity is correlated with the level of expression of the prohormone and mature hormone, the expression of proinsulin, insulin, and PC1/3 in human beta cells was examined. This analysis identified a human beta cell type that expressed proinsulin but lacked PC1/3 (ProIN+PC1/3−). This beta cell type is absent in rodent islets and is abundant in human islets of adults but scarce in islets from postnatal donors. Human islets also contained a beta cell type that expressed both proinsulin and variable levels of PC1/3 (ProIN+PC1/3+) and a less abundant cell type that lacked proinsulin but expressed the convertase (ProIN−PC1/3+). These cell phenotypes were altered by type 2 diabetes. These data suggest that these three cell types represent different stages of a dynamic process with proinsulin folding in ProIN+PC1/3− cells, proinsulin conversion into insulin in ProIN+PC1/3+cells, and replenishment of the proinsulin content in ProIN−PC1/3+ cells:


Diabetologia ◽  
2019 ◽  
Vol 63 (2) ◽  
pp. 395-409 ◽  
Author(s):  
Masaya Oshima ◽  
Séverine Pechberty ◽  
Lara Bellini ◽  
Sven O. Göpel ◽  
Mélanie Campana ◽  
...  

Abstract Aims/hypothesis During the onset of type 2 diabetes, excessive dietary intake of saturated NEFA and fructose lead to impaired insulin production and secretion by insulin-producing pancreatic beta cells. The majority of data on the deleterious effects of lipids on functional beta cell mass were obtained either in vivo in rodent models or in vitro using rodent islets and beta cell lines. Translating data from rodent to human beta cells remains challenging. Here, we used the human beta cell line EndoC-βH1 and analysed its sensitivity to a lipotoxic and glucolipotoxic (high palmitate with or without high glucose) insult, as a way to model human beta cells in a type 2 diabetes environment. Methods EndoC-βH1 cells were exposed to palmitate after knockdown of genes related to saturated NEFA metabolism. We analysed whether and how palmitate induces apoptosis, stress and inflammation and modulates beta cell identity. Results EndoC-βH1 cells were insensitive to the deleterious effects of saturated NEFA (palmitate and stearate) unless stearoyl CoA desaturase (SCD) was silenced. SCD was abundantly expressed in EndoC-βH1 cells, as well as in human islets and human induced pluripotent stem cell-derived beta cells. SCD silencing induced markers of inflammation and endoplasmic reticulum stress and also IAPP mRNA. Treatment with the SCD products oleate or palmitoleate reversed inflammation and endoplasmic reticulum stress. Upon SCD knockdown, palmitate induced expression of dedifferentiation markers such as SOX9, MYC and HES1. Interestingly, SCD knockdown by itself disrupted beta cell identity with a decrease in mature beta cell markers INS, MAFA and SLC30A8 and decreased insulin content and glucose-stimulated insulin secretion. Conclusions/interpretation The present study delineates an important role for SCD in the protection against lipotoxicity and in the maintenance of human beta cell identity. Data availability Microarray data and all experimental details that support the findings of this study have been deposited in in the GEO database with the GSE130208 accession code.


Author(s):  
Charanya Muralidharan ◽  
Amelia K Linnemann

Type 1 diabetes is an insulin-dependent, autoimmune disease where the pancreatic beta cells are destroyed resulting in hyperglycemia. This multi-factorial disease involves multiple environmental and genetic factors, and has no clear etiology. Accumulating evidence suggests that early signaling defects within the beta cells may promote a change in the local immune mileu, contributing to autoimmunity. Therefore, many studies have been focused on intrinsic beta cell mechanisms that aid in restoration of cellular homeostasis under environmental conditions that cause dysfunction. One of these intrinsic mechanisms to promote homeostasis is autophagy, defects in which are clearly linked with beta cell dysfunction in the context of type 2 diabetes. Recent studies have now also pointed towards beta cell autophagy defects in the context of type 1 diabetes. In this perspectives review, we will discuss the evidence supporting a role for beta cell autophagy in the pathogenesis of type 1 diabetes, including a potential role for unconventional secretion of autophagosomes/lysosomes in the changing dialogue between the beta cell and immune cells.


2021 ◽  
Vol 22 (22) ◽  
pp. 12099
Author(s):  
Lorella Marselli ◽  
Emanuele Bosi ◽  
Carmela De Luca ◽  
Silvia Del Guerra ◽  
Marta Tesi ◽  
...  

Arginase 2 (ARG2) is a manganese metalloenzyme involved in several tissue specific processes, from physiology to pathophysiology. It is variably expressed in extra-hepatic tissues and is located in the mitochondria. In human pancreatic beta cells, ARG2 is downregulated in type 2 diabetes. The enzyme regulates the synthesis of polyamines, that are involved in pancreas development and regulation of beta cell function. Here, we discuss several features of ARG2 and polyamines, which can be relevant to the pathophysiology of type 2 diabetes.


2018 ◽  
Vol 473 ◽  
pp. 186-193 ◽  
Author(s):  
Marco Bugliani ◽  
Farooq Syed ◽  
Flavia M.M. Paula ◽  
Bilal A. Omar ◽  
Mara Suleiman ◽  
...  

2014 ◽  
Vol 92 (8) ◽  
pp. 613-620 ◽  
Author(s):  
Joana Moitinho Oliveira ◽  
Sandra A. Rebuffat ◽  
Rosa Gasa ◽  
Ramon Gomis

Insulin receptor substrate 2 (IRS2) is a widely expressed protein that regulates crucial biological processes including glucose metabolism, protein synthesis, and cell survival. IRS2 is part of the insulin – insulin-like growth factor (IGF) signaling pathway and mediates the activation of the phosphotidylinositol 3-kinase (PI3K)–Akt and the Ras–mitogen-activated protein kinase (MAPK) cascades in insulin target tissues and in the pancreas. The best evidence of this is that systemic elimination of the Irs2 in mice (Irs2−/−) recapitulates the pathogenesis of type 2 diabetes (T2D), in that diabetes arises as a consequence of combined insulin resistance and beta-cell failure. Indeed, work using this knockout mouse has confirmed the importance of IRS2 in the control of glucose homeostasis and especially in the survival and function of pancreatic beta-cells. These studies have shown that IRS2 is critically required for beta-cell compensation in conditions of increased insulin demand. Importantly, islets isolated from T2D patients exhibit reduced IRS2 expression, which supports the likely contribution of altered IRS2-dependent signaling to beta-cell failure in human T2D. For all these reasons, the Irs2−/− mouse has been and will be essential for elucidating the inter-relationship between beta-cell function and insulin resistance, as well as to delineate therapeutic strategies to protect beta-cells during T2D progression.


2021 ◽  
Author(s):  
Sofia Thomaidou ◽  
Roderick C. Slieker ◽  
Arno R. van der Slik ◽  
Jasper Boom ◽  
Flip Mulder ◽  
...  

Type 1 diabetes is an autoimmune disease characterized by autoreactive T-cell mediated destruction of the insulin-producing pancreatic beta-cells. Increasing evidence suggest that the beta-cells themselves contribute to their own destruction by generating neo-antigens through the production of aberrant or modified proteins that escape central tolerance. We have recently demonstrated that ribosomal infidelity amplified by stress could lead to the generation of neoantigens in human beta-cells, emphasizing the participation of nonconventional translation events to autoimmunity, as occurring in cancer or virus-infected tissues. Using a transcriptome-wide profiling approach to map translation initiation start sites in human beta-cells under standard and inflammatory conditions, we identify a completely new set of polypeptides derived from non-canonical start sites and translation initiation within lncRNA. Our data underline the extreme diversity of the beta-cell translatome and may reveal new functional biomarkers for beta-cell distress, disease prediction and progression and therapeutic intervention in type 1 diabetes.


Author(s):  
Bhaskar Joshi ◽  
Praveen Yadav ◽  
A. Geetha Bhavani

Aim: The study aimed to analyze the effect of Sitagliptin with Glimepiride during the treatment to improve pancreatic beta-cells in T2DM patients. Beta cells are type of cell found in pancreatic islet and also synthesize, secrete the insulin and amylin. Sitagliptin is found to be maintaining the beta-cells function and glycaemic control in T2DM patients. Place and Duration of Study: Sample: This study open label randomized T2DM patients, study was conducted at the, Felix multi-specialty hospital, Noida U.P with enrolled patients from 1st Oct, 2017 to 30st Sept, 2019. Methodology: Randomly diabetes mellitus type-2 (T2DM) patients’ data is collected (110patients) for statistical analysis. For this study T2DM patients enrolled with age of 30-60 years, treated with Sitagliptin and Glimepiride once a day. The baseline of HbA1c >7.0% to <10.5% thus, the performed student t-test is to find out the significance role. Results: The 110 patients are distributed in two groups: one Sitagliptin user group (n=62) and second Glimepiride user group (n=43). The sitagliptin treatments may also protect also beta cells as pancreas may not able to regenerate beta cell. Conclusion: The sitagliptin treatments may also protect beta cells as pancreas may not able to regenerate beta cell.


2021 ◽  
Author(s):  
Fabrice Heitz ◽  
Fabian Wirth ◽  
Christine Seeger ◽  
Ioana Combaluzier ◽  
Karin Breu ◽  
...  

Abstract In patients with type 2 diabetes, pancreatic beta cells progressively degenerate and gradually lose their ability to produce insulin and regulate blood glucose. Beta cell dysfunction and loss is associated with an accumulation of aggregated forms of islet amyloid polypeptide (IAPP) consisting of soluble prefibrillar IAPP oligomers as well as insoluble IAPP fibrils in pancreatic islets. Here, we describe a novel human monoclonal antibody selectively targeting IAPP oligomers and neutralizing IAPP aggregate toxicity by preventing membrane disruption and apoptosis in vitro. Antibody treatment in rats and mice transgenic for human IAPP, and human islet-engrafted mouse models of type 2 diabetes triggered clearance of IAPP oligomers resulting in beta cell protection and improved glucose control. These results provide new evidence for the pathological role of IAPP oligomers and suggest that antibody-mediated removal of IAPP oligomers could be a pharmaceutical strategy to support beta cell function in type 2 diabetes.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Faer Morrison ◽  
Karen Johnstone ◽  
Anna Murray ◽  
Jonathan Locke ◽  
Lorna W. Harries

Altered expression of oxidative metabolism genes has been described in the skeletal muscle of individuals with type 2 diabetes. Pancreatic beta cells contain low levels of antioxidant enzymes and are particularly susceptible to oxidative stress. In this study, we explored the effect of hyperglycemia-induced oxidative stress on a panel of oxidative metabolism genes in a rodent beta cell line. We exposed INS-1 rodent beta cells to low (5.6 mmol/L), ambient (11 mmol/L), and high (28 mmol/L) glucose conditions for 48 hours. Increases in oxidative stress were measured using the fluorescent probe dihydrorhodamine 123. We then measured the expression levels of a panel of 90 oxidative metabolism genes by real-time PCR. Elevated reactive oxygen species (ROS) production was evident in INS-1 cells after 48 hours (P<0.05). TLDA analysis revealed a significant (P<0.05) upregulation of 16 of the 90 genes under hyperglycemic conditions, although these expression differences did not reflect differences in ROS. We conclude that although altered glycemia may influence the expression of some oxidative metabolism genes, this effect is probably not mediated by increased ROS production. The alterations to the expression of oxidative metabolism genes previously observed in human diabetic skeletal muscle do not appear to be mirrored in rodent pancreatic beta cells.


Sign in / Sign up

Export Citation Format

Share Document