scholarly journals Functional Phenotypes of Human Vγ9Vδ2 T Cells in Lymphoid Stress Surveillance

Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 772 ◽  
Author(s):  
Oliver Nussbaumer ◽  
Martin Thurnher

Butyrophilin and butyrophilin-like proteins select γδ T cells and direct the migration of γδ T cell subsets to distinct anatomical sites. γδ T cells expressing Vδ2 paired with Vγ9 (Vγ9Vδ2 T cells) are the predominant γδ T cell type in human peripheral blood. Vγ9Vδ2 T cells, which cannot be studied easily in vivo because they do not exist in rodents, are often referred to as innate-like T cells. The genetically recombined γδ T cell receptor (TCR) that responds to isoprenoid-derived pyrophosphates (phosphoantigens) produced by infected and malignant cells in a butyrophilin-dependent manner qualifies them as therapeutically relevant components of the adaptive immune system. On the other hand, cell-surface proteins such as the C-type lectin CD161 mark a functional phenotype of Vγ9Vδ2 T cells that mediates TCR-independent innate-like responses. Moreover, CD56 (neural cell adhesion molecule, NCAM) and the G protein-coupled receptor GPR56 define Vγ9Vδ2 T cells with increased cytolytic potential and, like CD161, may also be expressed by dendritic cells, principally facilitating the generation of an innate-like immunological synapse. In this review, we summarise current knowledge of Vγ9Vδ2 T cell functional phenotypes that are critical to lymphoid stress surveillance.

2021 ◽  
Vol 9 (4) ◽  
pp. e002051
Author(s):  
Ryan Michael Reyes ◽  
Yilun Deng ◽  
Deyi Zhang ◽  
Niannian Ji ◽  
Neelam Mukherjee ◽  
...  

BackgroundAnti-programmed death-ligand 1 (αPD-L1) immunotherapy is approved to treat bladder cancer (BC) but is effective in <30% of patients. Interleukin (IL)-2/αIL-2 complexes (IL-2c) that preferentially target IL-2 receptor β (CD122) augment CD8+ antitumor T cells known to improve αPD-L1 efficacy. We hypothesized that the tumor microenvironment, including local immune cells in primary versus metastatic BC, differentially affects immunotherapy responses and that IL-2c effects could differ from, and thus complement αPD-L1.MethodsWe studied mechanisms of IL-2c and αPD-L1 efficacy using PD-L1+ mouse BC cell lines MB49 and MBT-2 in orthotopic (bladder) and metastatic (lung) sites.ResultsIL-2c reduced orthotopic tumor burden and extended survival in MB49 and MBT-2 BC models, similar to αPD-L1. Using antibody-mediated cell depletions and genetically T cell-deficient mice, we unexpectedly found that CD8+ T cells were not necessary for IL-2c efficacy against tumors in bladder, whereas γδ T cells, not reported to contribute to αPD-L1 efficacy, were indispensable for IL-2c efficacy there. αPD-L1 responsiveness in bladder required conventional T cells as expected, but not γδ T cells, altogether defining distinct mechanisms for IL-2c and αPD-L1 efficacy. γδ T cells did not improve IL-2c treatment of subcutaneously challenged BC or orthotopic (peritoneal) ovarian cancer, consistent with tissue-specific and/or tumor-specific γδ T cell contributions to IL-2c efficacy. IL-2c significantly altered bladder intratumoral γδ T cell content, activation status, and specific γδ T cell subsets with antitumor or protumor effector functions. Neither IL-2c nor αPD-L1 alone treated lung metastatic MB49 or MBT-2 BC, but their combination improved survival in both models. Combination treatment efficacy in lungs required CD8+ T cells but not γδ T cells.ConclusionsMechanistic insights into differential IL-2c and αPD-L1 treatment and tissue-dependent effects could help develop rational combination treatment strategies to improve treatment efficacy in distinct cancers. These studies also provide insights into γδ T cell contributions to immunotherapy in bladder and engagement of adaptive immunity by IL-2c plus αPD-L1 to treat refractory lung metastases.


2021 ◽  
Author(s):  
Aline Teixeira ◽  
Alexandria Gillespie ◽  
Alehegne Yirsaw ◽  
Emily Britton ◽  
Janice Telfer ◽  
...  

Pathogenic Leptospira species cause leptospirosis, a neglected zoonotic disease recognized as a global public health problem. It is also the cause of the most common cattle infection that results in major economic losses due to reproductive problems. γδ T cells play a role in the protective immune response in livestock species against Leptospira while human γδ T cells also respond to Leptospira. Thus, activation of γδ T cells has emerged as a potential component for optimization of vaccine strategies. Bovine γδ T cells proliferate and produce IFN-γ in response to vaccination with inactivated leptospires and this response is mediated by a specific subpopulation of the WC1-bearing γδ T cells. WC1 molecules are members of the group B scavenger receptor cysteine rich (SRCR) superfamily and are composed of multiple SRCR domains, of which particular extracellular domains act as ligands for Leptospira. Since WC1 molecules function as both pattern recognition receptors and γδ TCR coreceptors, the WC1 system has been proposed as a novel target to engage γδ T cells. Here, we demonstrate the involvement of leptospiral protein antigens in the activation of WC1+ γδ T cells and identified two leptospiral outer membrane proteins able to interact directly with them. Interestingly, we show that the protein-specific γδ T cell response is composed of WC1.1+ and WC1.2+ subsets, although a greater number of WC1.1+ γδ T cells respond. Identification of protein antigens will enhance our understanding of the role γδ T cells play in the leptospiral immune response and in recombinant vaccine development.


Author(s):  
Hannah Kaminski ◽  
Coline Ménard ◽  
Bouchra El Hayani ◽  
And-Nan Adjibabi ◽  
Gabriel Marsères ◽  
...  

Abstract Cytomegalovirus (CMV) is a major infectious cause of death and disease after transplantation. We have previously demonstrated that the tissue-associated adaptive Vδ2neg γδ T cells are key effectors responding to CMV and associated with recovery, contrasting with their innatelike circulating counterparts, the Vγ9posVδ2pos T cells that respond to phosphoantigens but not to CMV. A third Vγ9negVδ2pos subgroup with adaptive functions has been described in adults. In the current study, we demonstrate that these Vγ9negVδ2pos T cells are also components of the CMV immune response while presenting with distinct characteristics from Vδ2neg γδ T cells. In a cohort of kidney transplant recipients, CMV seropositivity was the unique clinical parameter associated with Vγ9negVδ2pos T-cell expansion and differentiation. Extensive phenotyping demonstrated their substantial cytotoxic potential and activation during acute CMV primary infection or reinfection. In vitro, Vγ9negVδ2pos T cells responded specifically to CMV-infected cells in a T-cell receptor–dependent manner and through strong interferon γ production. Finally, Vγ9negVδ2pos T cells were the only γδ T-cell subset in which expansion was tightly correlated with the severity of CMV disease. To conclude, our results identify a new player in the immune response against CMV and open interesting clinical perspectives for using Vγ9negVδ2pos T cells as an immune marker for CMV disease severity in immunocompromised patients.


2020 ◽  
Vol 117 (31) ◽  
pp. 18649-18660 ◽  
Author(s):  
Sarina Ravens ◽  
Alina S. Fichtner ◽  
Maike Willers ◽  
Dennis Torkornoo ◽  
Sabine Pirr ◽  
...  

Starting at birth, the immune system of newborns and children encounters and is influenced by environmental challenges. It is still not completely understood how γδ T cells emerge and adapt during early life. Studying the composition of T cell receptors (TCRs) using next-generation sequencing (NGS) in neonates, infants, and children can provide valuable insights into the adaptation of T cell subsets. To investigate how neonatal γδ T cell repertoires are shaped by microbial exposure after birth, we monitored the γ-chain (TRG) and δ-chain (TRD) repertoires of peripheral blood T cells in newborns, infants, and young children from Europe and sub-Saharan Africa. We identified a set ofTRGandTRDsequences that were shared by all children from Europe and Africa. These were primarily public clones, characterized by simple rearrangements of Vγ9 and Vδ2 chains with low junctional diversity and usage of non-TRDJ1gene segments, reminiscent of early ontogenetic subsets of γδ T cells. Further profiling revealed that these innate, public Vγ9Vδ2+T cells underwent an immediate TCR-driven polyclonal proliferation within the first 4 wk of life. In contrast, γδ T cells using Vδ1+and Vδ3+TRDrearrangements did not significantly expand after birth. However, different environmental cues may lead to the observed increase of Vδ1+and Vδ3+TRDsequences in the majority of African children. In summary, we show how dynamic γδ TCR repertoires develop directly after birth and present important differences among γδ T cell subsets.


Blood ◽  
2011 ◽  
Vol 118 (26) ◽  
pp. 6952-6962 ◽  
Author(s):  
Giulia Costa ◽  
Séverine Loizon ◽  
Marianne Guenot ◽  
Iulia Mocan ◽  
Franck Halary ◽  
...  

AbstractThe control of Plasmodium falciparum erythrocytic parasite density is essential for protection against malaria, because it prevents pathogenesis and progression toward severe disease. P falciparum blood-stage parasite cultures are inhibited by human Vγ9Vδ2 γδ T cells, but the underlying mechanism remains poorly understood. Here, we show that both intraerythrocytic parasites and the extracellular red blood cell–invasive merozoites specifically activate Vγ9Vδ2 T cells in a γδ T cell receptor–dependent manner and trigger their degranulation. In contrast, the γδ T cell–mediated antiparasitic activity only targets the extracellular merozoites. Using perforin-deficient and granulysin-silenced T-cell lines, we demonstrate that granulysin is essential for the in vitro antiplasmodial process, whereas perforin is dispensable. Patients infected with P falciparum exhibited elevated granulysin plasma levels associated with high levels of granulysin-expressing Vδ2+ T cells endowed with parasite-specific degranulation capacity. This indicates in vivo activation of Vγ9Vδ2 T cells along with granulysin triggering and discharge during primary acute falciparum malaria. Altogether, this work identifies Vγ9Vδ2 T cells as unconventional immune effectors targeting the red blood cell–invasive extracellular P falciparum merozoites and opens novel perspectives for immune interventions harnessing the antiparasitic activity of Vγ9Vδ2 T cells to control parasite density in malaria patients.


2019 ◽  
Vol 216 (7) ◽  
pp. 1487-1496 ◽  
Author(s):  
Brian J. Laidlaw ◽  
Elizabeth E. Gray ◽  
Yang Zhang ◽  
Francisco Ramírez-Valle ◽  
Jason G. Cyster

Maintenance of a population of IL-17–committed γδ T cells in the dermis is important in promoting tissue immunity. However, the signals facilitating γδ T cell retention within the dermis remain poorly understood. Here, we find that sphingosine-1-phosphate receptor 2 (S1PR2) acts in a cell-intrinsic manner to oppose γδ T cell migration from the dermis to the skin draining lymph node (dLN). Migration of dermal γδ T cells to the dLN under steady-state conditions occurs in an S1PR1-dependent manner. S1PR1 and CD69 are reciprocally expressed on dermal γδ T cells, with loss of CD69 associated with increased S1PR1 expression and enhanced migration to the dLN. γδ T cells lacking both S1PR2 and CD69 are impaired in their maintenance within the dermis. These findings provide a mechanism for how IL-17+ γδ T cells establish residence within the dermis and identify a role for S1PR2 in restraining the egress of tissue-resident lymphocytes.


2017 ◽  
Vol 114 (43) ◽  
pp. E9056-E9065 ◽  
Author(s):  
Dorien Van hede ◽  
Barbara Polese ◽  
Chantal Humblet ◽  
Anneke Wilharm ◽  
Virginie Renoux ◽  
...  

It has been shown that γδ T cells protect against the formation of squamous cell carcinoma (SCC) in several models. However, the role of γδ T cells in human papillomavirus (HPV)-associated uterine cervical SCC, the third-leading cause of death by cancer in women, is unknown. Here, we investigated the impact of γδ T cells in a transgenic mouse model of carcinogenesis induced by HPV16 oncoproteins. Surprisingly, γδ T cells promoted the development of HPV16 oncoprotein-induced lesions. HPV16 oncoproteins induced a decrease in epidermal Skint1 expression and the associated antitumor Vγ5+ γδ T cells, which were replaced by γδ T-cell subsets (mainly Vγ6+ γδlowCCR2+CCR6−) actively producing IL-17A. Consistent with a proangiogenic role, γδ T cells promoted the formation of blood vessels in the dermis underlying the HPV-induced lesions. In human cervical biopsies, IL-17A+ γδ T cells could only be observed at the cancer stage (SCC), where HPV oncoproteins are highly expressed, supporting the clinical relevance of our observations in mice. Overall, our results suggest that HPV16 oncoproteins induce a reorganization of the local epithelial-associated γδ T-cell subpopulations, thereby promoting angiogenesis and cancer development.


2015 ◽  
Vol 112 (6) ◽  
pp. E556-E565 ◽  
Author(s):  
Tanya Dimova ◽  
Margreet Brouwer ◽  
Françoise Gosselin ◽  
Joël Tassignon ◽  
Oberdan Leo ◽  
...  

γδ T cells are unconventional T cells recognizing antigens via their γδ T-cell receptor (TCR) in a way that is fundamentally different from conventional αβ T cells. γδ T cells usually are divided into subsets according the type of Vγ and/or Vδ chain they express in their TCR. T cells expressing the TCR containing the γ-chain variable region 9 and the δ-chain variable region 2 (Vγ9Vδ2 T cells) are the predominant γδ T-cell subset in human adult peripheral blood. The current thought is that this predominance is the result of the postnatal expansion of cells expressing particular complementary-determining region 3 (CDR3) in response to encounters with microbes, especially those generating phosphoantigens derived from the 2-C-methyl-d-erythritol 4-phosphate pathway of isoprenoid synthesis. However, here we show that, rather than requiring postnatal microbial exposure, Vγ9Vδ2 T cells are the predominant blood subset in the second-trimester fetus, whereas Vδ1+ and Vδ3+ γδ T cells are present only at low frequencies at this gestational time. Fetal blood Vγ9Vδ2 T cells are phosphoantigen responsive and display very limited diversity in the CDR3 of the Vγ9 chain gene, where a germline-encoded sequence accounts for >50% of all sequences, in association with a prototypic CDR3δ2. Furthermore, these fetal blood Vγ9Vδ2 T cells are functionally preprogrammed (e.g., IFN-γ and granzymes-A/K), with properties of rapidly activatable innatelike T cells. Thus, enrichment for phosphoantigen-responsive effector T cells has occurred within the fetus before postnatal microbial exposure. These various characteristics have been linked in the mouse to the action of selecting elements and would establish a much stronger parallel between human and murine γδ T cells than is usually articulated.


2006 ◽  
Vol 7 (1-2) ◽  
pp. 81-96 ◽  
Author(s):  
Wasin Charerntantanakul ◽  
James A. Roth

The present review concentrates on the biological aspects of porcine T lymphocytes. Their ontogeny, subpopulations, localization and trafficking, and responses to pathogens are reviewed. The development of porcine T cells begins in the liver during the first trimester of fetal life and continues in the thymus from the second trimester until after birth. Porcine T cells are divided into two lineages, based on their possession of the [@@@]\rmalpha [@@@]β or γδ T-cell receptor. Porcine [@@@]\rmalpha [@@@]β T cells recognize antigens in a major histocompatibility complex (MHC)-restricted manner, whereas the γδ T cells recognize antigens in a MHC non-restricted fashion. The CD4+CD8−and CD4+CD8loT cell subsets of [@@@]\rmalpha [@@@]β T cells recognize antigens presented in MHC class II molecules, while the CD4−CD8+T cell subset recognizes antigens presented in MHC class I molecules. Porcine [@@@]\rmalpha [@@@]β T cells localize mainly in lymphoid tissues, whereas γδ T cells predominate in the blood and intestinal epithelium of pigs. Porcine CD8+[@@@]\rmalpha [@@@]β T cells are a prominent T-cell subset during antiviral responses, while porcine CD4+[@@@]\rmalpha [@@@]β T cell responses predominantly occur in bacterial and parasitic infections. Porcine γδ T cell responses have been reported in only a few infections. Porcine T cell responses are suppressed by some viruses and bacteria. The mechanisms of T cell suppression are not entirely known but reportedly include the killing of T cells, the inhibition of T cell activation and proliferation, the inhibition of antiviral cytokine production, and the induction of immunosuppressive cytokines.


2019 ◽  
Author(s):  
Oliver Dienz ◽  
Victoria L. DeVault ◽  
Shawn C. Musial ◽  
Somen K. Mistri ◽  
Linda Mei ◽  
...  

AbstractDuring thymic development, γδ T cells commit to either an IFN-γ- or an IL-17-producing phenotype through mechanisms that remain unclear. Here, we investigated whether the SLAM/SAP signaling pathway played a role in the functional programming of thymic γδ T cells. Characterization of SLAM family receptor expression revealed that thymic γδ T cell subsets were each marked by distinct co-expression profiles of SLAMF1, SLAMF4, and SLAMF6. In the thymus, immature CD24hiVγ1 and Vγ4 γδ T cells were largely contained within a SLAMF1+SLAMF6+double positive (DP) population, while mature CD24lowsubsets were either SLAMF1+or SLAMF6+single positive (SP) cells. In the periphery, SLAMF1 and SLAMF6 expression on Vγ1, Vγ4, and Vγ6 T cells distinguished IL-17- and IFN-γ-producing subsets, respectively. Disruption of SLAM family receptor signaling through deletion of SAP resulted in impaired thymic γδ T cell maturation at the CD24hiSLAMF1+SLAMF6+DP stage that was associated with a decreased frequency of CD44+RORγt+γδ T cells. These defects were in turn associated with impaired γδ T cell IL-17 and IFN-γ production in both the thymus as well as in peripheral tissues. The role for SAP was subset-specific, as Vγ1, Vγ4, Vγ5, but not Vγ6 subsets were SAP-dependent. Together, these data suggest that the SLAM/SAP signaling pathway regulates a critical checkpoint in the functional programming of IL-17 and IFN-γ-producing γδ T cell subsets during thymic development.


Sign in / Sign up

Export Citation Format

Share Document