scholarly journals Functional Foods: An Approach to Modulate Molecular Mechanisms of Alzheimer’s Disease

Cells ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 2347
Author(s):  
Anna Atlante ◽  
Giuseppina Amadoro ◽  
Antonella Bobba ◽  
Valentina Latina

A new epoch is emerging with intense research on nutraceuticals, i.e., “food or food product that provides medical or health benefits including the prevention and treatment of diseases”, such as Alzheimer’s disease. Nutraceuticals act at different biochemical and metabolic levels and much evidence shows their neuroprotective effects; in particular, they are able to provide protection against mitochondrial damage, oxidative stress, toxicity of β-amyloid and Tau and cell death. They have been shown to influence the composition of the intestinal microbiota significantly contributing to the discovery that differential microorganisms composition is associated with the formation and aggregation of cerebral toxic proteins. Further, the routes of interaction between epigenetic mechanisms and the microbiota–gut–brain axis have been elucidated, thus establishing a modulatory role of diet-induced epigenetic changes of gut microbiota in shaping the brain. This review examines recent scientific literature addressing the beneficial effects of some natural products for which mechanistic evidence to prevent or slowdown AD are available. Even if the road is still long, the results are already exceptional.

2019 ◽  
Author(s):  
Jonathan D Rudge

This paper describes a potential new explanation for Alzheimer’s disease (AD), referred to here as the lipid-invasion model. It proposes that AD is primarily caused by the influx of lipids following the breakdown of the blood brain barrier (BBB). The model argues that a principal role of the BBB is to protect the brain from external lipid access. When the BBB is damaged, it allows a mass influx of (mainly albumin-bound) free fatty acids (FFAs) and lipid-rich lipoproteins to the brain, which in turn causes neurodegeneration, amyloidosis, tau tangles and other AD characteristics. The model also argues that, whilst β-amyloid causes neurodegeneration, as is widely argued, its principal role in the disease lies in damaging the BBB. It is the external lipids, entering as a consequence, that are the primary drivers of neurodegeneration in AD., especially FFAs, which induce oxidative stress, stimulate microglia-driven neuroinflammation, and inhibit neurogenesis. Simultaneously, the larger, more lipid-laden lipoproteins, characteristic of the external plasma but not the CNS, cause endosomal-lysosomal abnormalities, amyloidosis and the formation of tau tangles, all characteristic of AD. In most cases (certainly in late-onset, noninherited forms of the disease) amyloidosis and tau tangle formation are consequences of this external lipid invasion, and in many ways more symptomatic of the disease than causative. In support of this, it is argued that the pattern of damage caused by the influx of FFAs into the brain is likely to resemble the neurodegeneration seen in alcohol-related brain damage (ARBD), a disease that shows many similarities to AD, including the areas of the brain it affects. The fact that neurodegeneration is far more pronounced in AD than in ARBD, and characterised by other features, such as amyloidosis and tau tangles, most likely results from the greater heterogeneity of the lipid assault in AD compared with ethanol alone. The lipid-invasion model, described here, arguably provides the first cohesive, multi-factorial explanation of AD that accounts for all currently known major risk factors, and explains all AD-associated pathologies, including those, such as endosomal-lysosomal dysfunction and excessive lipid droplet formation, that are not well-accounted for in other explanation of this disease.


2019 ◽  
Author(s):  
Jonathan D Rudge

This paper describes a potential new explanation for Alzheimer’s disease (AD), referred to here as the lipid-invasion model. It proposes that AD is primarily caused by the influx of lipids following the breakdown of the blood brain barrier (BBB). The model argues that a principal role of the BBB is to protect the brain from external lipid access. When the BBB is damaged, it allows a mass influx of (mainly albumin-bound) free fatty acids (FFAs) and lipid-rich lipoproteins to the brain, which in turn causes neurodegeneration, amyloidosis, tau tangles and other AD characteristics. The model also argues that, whilst β-amyloid causes neurodegeneration, as is widely argued, its principal role in the disease lies in damaging the BBB. It is the external lipids, entering as a consequence, that are the primary drivers of neurodegeneration in AD., especially FFAs, which induce oxidative stress, stimulate microglia-driven neuroinflammation, and inhibit neurogenesis. Simultaneously, the larger, more lipid-laden lipoproteins, characteristic of the external plasma but not the CNS, cause endosomal-lysosomal abnormalities, amyloidosis and the formation of tau tangles, all characteristic of AD. In most cases (certainly in late-onset, noninherited forms of the disease) amyloidosis and tau tangle formation are consequences of this external lipid invasion, and in many ways more symptomatic of the disease than causative. In support of this, it is argued that the pattern of damage caused by the influx of FFAs into the brain is likely to resemble the neurodegeneration seen in alcohol-related brain damage (ARBD), a disease that shows many similarities to AD, including the areas of the brain it affects. The fact that neurodegeneration is far more pronounced in AD than in ARBD, and characterised by other features, such as amyloidosis and tau tangles, most likely results from the greater heterogeneity of the lipid assault in AD compared with ethanol alone. The lipid-invasion model, described here, arguably provides the first cohesive, multi-factorial explanation of AD that accounts for all currently known major risk factors, and explains all AD-associated pathologies, including those, such as endosomal-lysosomal dysfunction and excessive lipid droplet formation, that are not well-accounted for in other explanation of this disease.


2019 ◽  
Author(s):  
Jonathan D Rudge

This paper describes a potential new explanation for Alzheimer’s disease (AD), referred to here as the lipid leakage model. It proposes that AD is caused by the influx of lipids following the breakdown of the blood brain barrier (BBB).The model argues that a principle role of the BBB is to protect the brain from external lipid access. When the BBB is damaged, it allows a mass influx of free fatty acids (FFAs) and lipid-rich lipoproteins to the brain, which in turn causes neurodegeneration, amyloidosis, tau tangles and other AD characteristics. The model also argues that, whilst β-amyloid causes neurodegeneration, as is widely argued, its principal role in the disease lies in damaging the BBB. It is the external lipids, entering as a consequence, that are the primary drivers of neurodegeneration in AD, especially FFAs, which stimulate microglia-driven neuroinflammation, inhibit neurogenesis and cause endosomal-lysosomal abnormalities, all characteristic of AD. In most cases amyloidosis and tau tangle formation lie downstream of these lipids and are in many ways as much symptomatic of the disease as causative. In support of this, it is argued that the pattern of damage caused by the influx of FFAs into the brain is likely to resemble the neurodegeneration seen in alcohol-related brain damage (ARBD), a disease that shows many similarities to AD, including the areas of the brain it affects. The fact that anterograde amnesia is far more pronounced in AD than ARBD results from the greater hydrophobicity of FFAs, in an anaesthesia-related manner.


2019 ◽  
Author(s):  
Jonathan D Rudge

This paper describes a potential new explanation for Alzheimer’s disease (AD), referred to here as the lipid-leakage model. It proposes that AD is caused by the influx of lipids following the breakdown of the blood brain barrier (BBB). The model argues that a principle role of the BBB is to protect the brain from external lipid access. When the BBB is damaged, it allows a mass influx of (mainly albumin-bound) free fatty acids (FFAs) and lipid-rich lipoproteins to the brain, which in turn causes neurodegeneration, amyloidosis, tau tangles and other AD characteristics. The model also argues that, whilst β-amyloid causes neurodegeneration, as is widely argued, its principal role in the disease lies in damaging the BBB. It is the external lipids, entering as a consequence, that are the primary drivers of neurodegeneration in AD., especially FFAs, which induce oxidative stress, stimulate microglia-driven neuroinflammation, and inhibit neurogenesis. Simultaneously, the larger, more lipid-laden lipoproteins, characteristic of the external plasma but not the CNS, cause endosomal-lysosomal abnormalities, amyloidosis and the formation of tau tangles, all characteristic of AD. In most cases (certainly in late-onset, noninherited forms of the disease) amyloidosis and tau tangle formation are consequences of this external lipid invasion, and in many ways more symptomatic of the disease than causative. In support of this, it is argued that the pattern of damage caused by the influx of FFAs into the brain is likely to resemble the neurodegeneration seen in alcohol-related brain damage (ARBD), a disease that shows many similarities to AD, including the areas of the brain it affects. The fact that neurodegeneration is far more pronounced in AD than in ARBD most likely results from the greater heterogeneity of the lipid assault in AD compared with ethanol alone. The lipid-leakage model, described here, arguably provides the first cohesive, multi-factorial explanation of AD that best accounts for all currently known major risk factors, and credibly explains all AD-associated pathologies, including those, such as endosomal-lysosomal dysfunction and excessive lipid droplet formation, that have been too readily overlooked by other accounts of this disease.


2019 ◽  
Author(s):  
Jonathan D Rudge

This paper describes a potential new explanation for Alzheimer’s disease (AD), referred to here as the lipid leakage model. It proposes that AD is caused by the influx of lipids following the breakdown of the blood brain barrier (BBB).The model argues that a principle role of the BBB is to protect the brain from external lipid access. When the BBB is damaged, it allows a mass influx of free fatty acids (FFAs) and lipid-rich lipoproteins to the brain, which in turn causes neurodegeneration, amyloidosis, tau tangles and other AD characteristics. The model also argues that, whilst β-amyloid causes neurodegeneration, as is widely argued, its principal role in the disease lies in damaging the BBB. It is the external lipids, entering as a consequence, that are the primary drivers of neurodegeneration in AD, especially FFAs, which stimulate microglia-driven neuroinflammation, inhibit neurogenesis and cause endosomal-lysosomal abnormalities, all characteristic of AD. In most cases amyloidosis and tau tangle formation lie downstream of these lipids and are in many ways as much symptomatic of the disease as causative. In support of this, it is argued that the pattern of damage caused by the influx of FFAs into the brain is likely to resemble the neurodegeneration seen in alcohol-related brain damage (ARBD), a disease that shows many similarities to AD, including the areas of the brain it affects. The fact that anterograde amnesia is far more pronounced in AD than ARBD results from the greater hydrophobicity of FFAs, in an anaesthesia-related manner.


2019 ◽  
Author(s):  
Jonathan D Rudge

This paper describes a potential new explanation for Alzheimer’s disease (AD), referred to here as the lipid-leakage model. It proposes that AD is caused by the influx of lipids following the breakdown of the blood brain barrier (BBB). The model argues that a principle role of the BBB is to protect the brain from external lipid access. When the BBB is damaged, it allows a mass influx of (mainly albumin-bound) free fatty acids (FFAs) and lipid-rich lipoproteins to the brain, which in turn causes neurodegeneration, amyloidosis, tau tangles and other AD characteristics. The model also argues that, whilst β-amyloid causes neurodegeneration, as is widely argued, its principal role in the disease lies in damaging the BBB. It is the external lipids, entering as a consequence, that are the primary drivers of neurodegeneration in AD., especially FFAs, which induce oxidative stress, stimulate microglia-driven neuroinflammation, and inhibit neurogenesis. Simultaneously, the larger, more lipid-laden lipoproteins, characteristic of the external plasma but not the CNS, cause endosomal-lysosomal abnormalities, amyloidosis and the formation of tau tangles, all characteristic of AD. In most cases (certainly in late-onset, noninherited forms of the disease) amyloidosis and tau tangle formation are consequences of this external lipid invasion, and in many ways more symptomatic of the disease than causative. In support of this, it is argued that the pattern of damage caused by the influx of FFAs into the brain is likely to resemble the neurodegeneration seen in alcohol-related brain damage (ARBD), a disease that shows many similarities to AD, including the areas of the brain it affects. The fact that neurodegeneration is far more pronounced in AD than in ARBD most likely results from the greater heterogeneity of the lipid assault in AD compared with ethanol alone. The lipid-leakage model, described here, arguably provides the first cohesive, multi-factorial explanation of AD that best accounts for all currently known major risk factors, and credibly explains all AD-associated pathologies, including those, such as endosomal-lysosomal dysfunction and excessive lipid droplet formation, that have been too readily overlooked by other accounts of this disease.


2021 ◽  
Vol 12 ◽  
Author(s):  
Aqilah Hambali ◽  
Jaya Kumar ◽  
Nur Fariesha Md Hashim ◽  
Sandra Maniam ◽  
Muhammad Zulfadli Mehat ◽  
...  

Alzheimer’s disease (AD) is a neurodegenerative disorder that is characterised by the presence of extracellular beta-amyloid fibrillary plaques and intraneuronal neurofibrillary tau tangles in the brain. Recurring failures of drug candidates targeting these pathways have prompted research in AD multifactorial pathogenesis, including the role of neuroinflammation. Triggered by various factors, such as hypoxia, neuroinflammation is strongly linked to AD susceptibility and/or progression to dementia. Chronic hypoxia induces neuroinflammation by activating microglia, the resident immune cells in the brain, along with an increased in reactive oxygen species and pro-inflammatory cytokines, features that are common to many degenerative central nervous system (CNS) disorders. Hence, interests are emerging on therapeutic agents and plant derivatives for AD that target the hypoxia-neuroinflammation pathway. Centella asiatica is one of the natural products reported to show neuroprotective effects in various models of CNS diseases. Here, we review the complex hypoxia-induced neuroinflammation in the pathogenesis of AD and the potential application of Centella asiatica as a therapeutic agent in AD or dementia.


2016 ◽  
Author(s):  
Yuanzheng Gu ◽  
Yaoling Shu ◽  
Angela W. Corona ◽  
Kui Xu ◽  
Allen F. Yi ◽  
...  

β-amyloid accumulation and Tau aggregation are hallmarks of Alzheimer’s disease, yet their underlying molecular mechanisms remain obscure, hindering therapeutic advances. Here we report that neuronal receptor PTPσ mediates both β-amyloid and Tau pathogenesis in two mouse models. In the brain, PTPσ binds to β-amyloid precursor protein (APP). Depletion of PTPσ reduces the affinity between APP and β-secretase, diminishing APP proteolytic products by β- and γ-cleavage without affecting other major substrates of the secretases, suggesting a specificity of β-amyloidogenic regulation. In human APP transgenic mice during aging, the progression of β-amyloidosis, Tau aggregation, neuroinflammation, synaptic loss, as well as behavioral deficits, all show unambiguous dependency on the expression of PTPσ. Additionally, the aggregates of endogenous Tau are found in a distribution pattern similar to that of early stage neurofibrillary tangles in Alzheimer brains. Together, these findings unveil a gatekeeping role of PTPσ upstream of the degenerative pathogenesis, indicating a potential for this neuronal receptor as a drug target for Alzheimer’s disease.


Antioxidants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1224
Author(s):  
Judit Marsillach ◽  
Maria Pia Adorni ◽  
Francesca Zimetti ◽  
Bianca Papotti ◽  
Giovanni Zuliani ◽  
...  

Several lines of epidemiological evidence link increased levels of high-density lipoprotein-cholesterol (HDL-C) with lower risk of Alzheimer’s disease (AD). This observed relationship might reflect the beneficial effects of HDL on the cardiovascular system, likely due to the implication of vascular dysregulation in AD development. The atheroprotective properties of this lipoprotein are mostly due to its proteome. In particular, apolipoprotein (Apo) A-I, E, and J and the antioxidant accessory protein paraoxonase 1 (PON1), are the main determinants of the biological function of HDL. Intriguingly, these HDL constituent proteins are also present in the brain, either from in situ expression, or derived from the periphery. Growing preclinical evidence suggests that these HDL proteins may prevent the aberrant changes in the brain that characterize AD pathogenesis. In the present review, we summarize and critically examine the current state of knowledge on the role of these atheroprotective HDL-associated proteins in AD pathogenesis and physiopathology.


2017 ◽  
Vol 131 (12) ◽  
pp. 1207-1214 ◽  
Author(s):  
Shereen Nizari ◽  
Ignacio A. Romero ◽  
Cheryl A. Hawkes

Neuronal death is a hallmark of Alzheimer's disease (AD) and considerable work has been done to understand how the loss of interconnectivity between neurons contributes to the associated dementia. Often overlooked however, is how the loss of neuronal innervation of blood vessels, termed perivascular innervation, may also contribute to the pathogenesis of AD. There is now considerable evidence supporting a crucial role for the neurovascular unit (NVU) in mediating the clearance of the β-amyloid (Aβ) peptide, one of the main pathological constituents of AD, from the brain. Moreover, efficient removal appears to be dependent on the communication of cells within the NVU to maintain adequate vascular tone and pulsatility. This review summarizes the composition of the NVU, including the sources of perivascular innervation and how the NVU mediates Aβ clearance from the brain. It also explores evidence supporting the hypothesis that loss of neurally mediated vasoreactivity contributes to Aβ pathology in the AD brain.


Sign in / Sign up

Export Citation Format

Share Document