scholarly journals Self-Assembled Corn-Husk-Shaped Fullerene Crystals as Excellent Acid Vapor Sensors

Chemosensors ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 16
Author(s):  
Zexuan Wei ◽  
Jingwen Song ◽  
Renzhi Ma ◽  
Katsuhiko Ariga ◽  
Lok Kumar Shrestha

Low-molecular-weight acid vapors cause aging and destruction in material processing. In this paper, facile fabrication of novel corn-husk-shaped fullerene C60 crystals (CHFCs) through the dynamic liquid–liquid interfacial precipitation method is reported. The CHFCs were grown at the liquid–liquid interface between isopropyl alcohol (IPA) and a saturated solution of C60 in mesitylene under ambient temperature and pressure conditions. The average length, outer diameter, and inner diameter of CHFCs were ca. 2.88 μm, 672 nm, and 473 nm, respectively. X-ray diffraction (XRD) analysis showed the CHFCs exhibit a mixed face-centered cubic (fcc) and hexagonal-close pack (hcp) crystal phases with lattice parameters a = 1.425 nm, V = 2.899 nm3 for fcc phase and a = 2.182 nm, c = 0.936 nm, a/c ratio = 2.33, and V = 3.859 nm3 for hcp phase. The CHFCs possess mesoporous structure as confirmed by transmission electron microscopy (TEM) and nitrogen sorption analysis. The specific surface area and the pore volume were ca. 57.3 m2 g−1 and 0.149 cm3 g−1, respectively, are higher than the nonporous pristine fullerene C60. Quartz crystal microbalance (QCM) sensing results show the excellent sensing performance CHFCs sensitive to acetic acid vapors due to the enhanced diffusion via mesoporous architecture and hollow structure of the CHFCs, demonstrating the potential of the material for the development of a new sensor system for aliphatic acid vapors sensing.

Sensors ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 267 ◽  
Author(s):  
Natsumi Furuuchi ◽  
Rekha Shrestha ◽  
Yuji Yamashita ◽  
Tetsuji Hirao ◽  
Katsuhiko Ariga ◽  
...  

Here we report the aromatic vapor sensing performance of bitter melon shaped nanoporous fullerene C60 crystals that are self-assembled at a liquid-liquid interface between isopropyl alcohol and C60 solution in dodecylbenzene at 25 °C. Average length and center diameter of the crystals were ca. 10 μm and ~2 μm, respectively. Powder X-ray diffraction pattern (pXRD) confirmed a face-centered cubic (fcc) structure with cell dimension ca. a = 1.4272 nm, and V = 2.907 nm3, which is similar to that of the pristine fullerene C60. Transmission electron microscopy (TEM) confirmed the presence of a nanoporous structure. Quartz crystal microbalance (QCM) results showed that the bitter melon shaped nanoporous C60 performs as an excellent sensing system, particularly for aromatic vapors, due to their easy diffusion through the porous architecture and strong π–π interactions with the sp2-carbon.


2020 ◽  
Vol 3 (2) ◽  
Author(s):  
Kavipriya K C ◽  
Sudha A P ◽  
Sujatha K ◽  
Sowmya Lakshmi K

The interest in miniaturization of particles revealed the hidden applications of metal oxides. The potential applications of the particles may vary when the size of the particle is reduced. One of the alternative routes to the conventional approach is the use of plant extract for the synthesis of metal oxides NPs. In the framework of this study, the ecofriendly MgO nanoparticles were synthesized using Acalypha Indica leaf extract,functioning as reducing and capping agent by co-precipitation method. The predecessor taken here was Magnesium Nitrate. The biologically synthesized MgO NPs were characterized by various techniques like X ray diffraction(XRD), Fourier Transform infrared spectroscopy(FTIR), Scanning electron microscope (SEM) with Energy Dispersive X-ray spectroscopy(EDX) profile and its antibacterial activity is evaluated against causative organisms. XRD studies confirmed the face centered cubic crystalline structure of MgO NPs and the average crystalline size of MgO NPs calculated using Scherer’s formula was found to be 13 nm. FTIR spectrum shows a significant Mg-O vibrational band. Purity, surface morphology and chemical composition of elements were confirmed by SEM with EDX. The SEM result shows the fine spherical morphology with the grain size range between 43nm to 62nm. Antimicrobial assay of MgO NPs was examined against gram positive and negative bacteria. Appreciated activity was observed on the Staphylococcus aureus bacterial species. In general, the renewed attempt of this facile approach gave the optimum results of multifunctional MgO NPs.


2020 ◽  
Vol 3 (2) ◽  
Author(s):  
Aarth R ◽  
Sudha A P ◽  
Sujatha B ◽  
Sowmya Lakshmi K

The phytosynthesis of n-type Cadmium Oxide Nanoparticles reduces the toxicity of the substance and makes it Eco-friendly. This Eco-friendly biosynthesis of CdO NPs was synthesized for the first time from the Queen of herbs, Ocimum Sanctum (holy basil).The biosynthesized Cadmium oxide was prepared using Ocimum leaf extract as a reductant and Cadmium Chloride and hydroxide as cadmium and oxide source materials by Co- Precipitation method. Thus obtained Cadmium Oxide Nanoparticles were characterized by different techniques such as X-ray diffraction (XRD), Fourier Transform infrared spectroscopy (FTIR), Scanning electron microscope (SEM),Energy dispersive X-ray spectroscopy(EDS) to study the structural and morphological properties. XRD pattern exhibited the formation of face centered cubic structure of CdO NPs with an average crystalline size of 11.5nm .The chemical bond formation of CdO NPs were confirmed by FTIR spectrum in the range of (400-4000cm-1). The SEM micrographs revealed the predominant formation of Cauliflower shape with a particle size in the range of 61-142nm. The high purity of the biosynthesized nanoparticles were confirmed by EDS analysis. Further it was tested against gram positive and gram negative bacterial strains and showed significant antibacterial activity. This biosynthetic research study opens an innovative window to progress our understanding of how CdO NPs shows resistance to different bacterial strains.


2018 ◽  
Vol 2018 ◽  
pp. 1-11
Author(s):  
Huiling Lv ◽  
Chao Wu ◽  
Xuan Liu ◽  
Andi Bai ◽  
Yue Cao ◽  
...  

In this study, we prepared PTX-loaded mesoporous hollow SnO2 nanofibers conjugated with folic acid (SFNFP) for liver cancer therapy. According to SEM and TEM characterization, SFNF showed a mesoporous hollow structure. The average outer diameter was 200 nm, and the wall thickness was 50 nm. The DSC and XRD study showed that PTX in the channels of nanofibers was present in an amorphous state. The in vitro release experiments demonstrated that SFNF could efficiently improve the dissolution rate of PTX. Both in vitro cell experiments and in vivo antitumor experiments showed that SFNFP could efficiently inhibit the growth of liver cancer cells. Therefore, SFNF is a promising targeting antitumor drug delivery carrier.


2002 ◽  
Vol 17 (9) ◽  
pp. 2205-2208 ◽  
Author(s):  
Kun'ichi Miyazawa ◽  
Koichi Hamamoto

Iodine-doped whiskers of C60 (I–C60 whiskers) with diameters ranging from submicrometers to micrometers and lengths longer than 100 μm were successfully obtained by the use of the liquid–liquid interfacial precipitation method. Transmission electron microscopy observations showed that the I–C60 whiskers were single crystalline and had a growth axis parallel to the close-packed direction of C60 molecules and expanded (002) lattice planes indicative of the intercalation of iodine and oxygen atoms between the (002) planes of a body-centered-tetragonal crystal system. The I–C60 whiskers showed nonlinear I-V curves. The electrical resistivity of the I–C60 whiskers was more than three orders of magnitude lower than that of pristine face-centered-cubic C60 crystals.


2009 ◽  
Vol 79-82 ◽  
pp. 1679-1682
Author(s):  
Wen Juan Huang ◽  
Chun Hua Lu ◽  
Wei Min Tan ◽  
Yan Zhang ◽  
Zhong Zi Xu

In this paper, setting 1.06 μm Gaussian modulated pulse electromagnetic wave as irradiation sources, the influences of structural parameters on reflectivity are analyzed by finite different time domain (FDTD) method. The results show that the filled factor and height are key factors for circular tube relief structure with non absorption. The optimal height could be set to 0.2 μm, which is one odd time of the ratio of incident wavelength λ and four equivalent refractive index 4N, then the best filled factor is between 0.7 and 0.9, the ratio of inner and outer diameter could be set between 0.4 and 0.6, and the structure period has little significant influence. Compared with cylinder solid structure, it has been discovered that circular tube hollow structure could weaken the backward energy of electromagnetic wave, and it would be more suitable for antireflection structure than solid cylinder structure. Moreover, we design two another circular tube relief structures simulations with different extinction coefficients, it is found that the reflectivities are lower up to 0.00016% than the non absorption one.


2005 ◽  
Vol 20 (3) ◽  
pp. 688-695 ◽  
Author(s):  
Kun'ichi Miyazawa ◽  
Jun-ichi Minato ◽  
Tetsuro Yoshii ◽  
Masahisa Fujino ◽  
Tadatomo Suga

Fine tubular fibers composed of C60 and C70 fullerene molecules were successfully fabricated by the liquid–liquid interfacial precipitation method. The walls of the tubular fibers were crystalline, and the fullerene molecules were densely packed along the growth axis of tube wall. The tubular structures are called “fullerene nanotubes.” The inner diameter and the outer diameter of C70 tubes showed a linear relationship, suggesting a constant wall thickness of the tubes. The tubular structures composed of C70 molecules could be formed when their diameter was larger than about 240 nm. The fullerene tubes were successfully fabricated by using a C60-C70 soot as well. The formation of fullerene nanotubes can be understood by assuming a mechanism of core dissolution of the solvated fullerene nanowhiskers.


2014 ◽  
Vol 8 (1) ◽  
pp. 39-46 ◽  
Author(s):  
Oman Zuas ◽  
Haznan Abimanyu ◽  
Widayanti Wibowo

The nanostructured cerium dioxide (CeO2) has been successfully fabricated using a simple precipitation method. Its characteristics were evaluated using TG-DTA, DR-UV-Vis, XRD, FTIR and TEM. The results showed that the nanostructured CeO2 has high purity and good crystalline nature, with face centered cubic (fcc) phase and the average diameter of CeO2 single crystal about 14 nm. Performance evaluation of the synthesized CeO2 samples showed that the nanostructured CeO2 has a strong adsorption toward acid orange-10 (AO-10) and congo red (CR) in aqueous solution. Under given experimental conditions (dye concentration of 15 mg/l, adsorbent dosage of 1 g/l, reaction temperature of 30 ? 1?C), it was estimated that the adsorption equilibrium for AO-10 and CR occurred at 60 min and 90 min of reaction time, respectively, with total removal of 96.82% for AO-10 dye and 93.55% for CR dye. The results suggested that the CeO2 nanopowder could be potentially used as an efficient adsorbent for the removal of synthetic organic dyes in aqueous solution and may address for future concern in the area.


BioResources ◽  
2020 ◽  
Vol 15 (1) ◽  
pp. 1716-1731 ◽  
Author(s):  
Shuang Shang ◽  
Zhenhua Qin ◽  
Kui Lan ◽  
Yan Wang ◽  
Juanjuan Zhang ◽  
...  

A Ni/Zr-MOF catalyst supported on Zr-metal organic framework (Zr-MOF) was prepared by a homogeneous precipitation method and was used in the co-gasification of wet sludge and straw. The Ni/Zr-MOF catalyst was characterized via thermogravimetric, X-ray diffraction, scanning electron microscopy, energy dispersive spectrometry, and Brunauer-Emmett-Teller analyses. The experimental results illustrated that the Zr-MOF crystals were an octahedral structure with a specific surface area of 806 m2/g, and had mesoporous structure. Nickel was uniformly dispersed on the surface of the catalyst, and most of the Ni/Zr-MOF crystals maintained an octahedral morphology. Compared with non-catalyst biomass gasification, the H2 yield increased from 0.39 mol/kg to 11.87 mol/kg using the Ni/Zr-MOF catalyst at 500 °C. After 10 instances of reuse, the H2 yield was still as high as 10.11 mol/kg. The Ni/Zr-MOF catalyst exhibited high catalytic activity and stability for biomass gasification at low-temperature.


2021 ◽  
Vol 1028 ◽  
pp. 339-345
Author(s):  
Riesma Tasomara ◽  
Nendar Herdianto ◽  
Dwi Gustiono ◽  
Adita Wardani Rahmania ◽  
Hanan Hakim ◽  
...  

Biphasic calcium phosphate (BCP) is a bonegraft material which is a mixture of hydroxyapatite (Ca10(PO4)6(OH)2, HA) and betatricalcium phosphate (Ca3(PO4)2, β-TCP). The combination of HA and β-TCP provides faster osseointegration, compared to HA, into parent bone so it can accelerate the bone recovery process. The mesoporous structure of bone graft material is suitable for drug delivery purpose. In order to study the mesoporous structure of BCP, the BCPs were prepared by precipitation method using chitosan, aloe vera, and chitosan-aloe vera hybrid as templates. A solution containing Ca(NO3)2·4H2O and template and a solution containing (NH4)2HPO4 and NH4HCO3 were used as starting materials. All prepared samples were calcined at 900°C for 1 hour. The identification of phases and functional groups of obtained BCP powders were characterized by X-Ray Diffraction technique and Fourier Transform Infrared (FTIR) spectroscopy, repectively. The XRD patterns show typical peaks of both HA and β-TCP crystal phases. FTIR spectra confirm the presence of phosphate functional groups. Morphological analysis using Scanning Electron Microscope (SEM) observed the presence of regular porous structure, however, the mesoporous structure was not seen. Particle size distribution and pore size analysis were analyzed by Particle Size Analyzer and Brunauer–Emmett–Teller (BET) method, respectively.


Sign in / Sign up

Export Citation Format

Share Document