scholarly journals Development of Magnetically Soft Amorphous Microwires for Technological Applications

Chemosensors ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 26
Author(s):  
Valentina Zhukova ◽  
Paula Corte-Leon ◽  
Juan Maria Blanco ◽  
Mihail Ipatov ◽  
Lorena Gonzalez-Legarreta ◽  
...  

Amorphous magnetic microwires can be suitable for a variety of technological applications due to their excellent magnetic softness and giant magnetoimpedance (GMI) effect. Several approaches for optimization of soft magnetic properties and GMI effect of magnetic microwires covered with an insulating, flexible, and biocompatible glass coating with tunable magnetic properties are overviewed. The high GMI effect and soft magnetic properties, achieved even in as-prepared Co-rich microwires with a vanishing magnetostriction coefficient, can be further improved by appropriate heat treatment (including stress-annealing and Joule heating). Although as-prepared Fe-rich amorphous microwires exhibit low GMI ratio and rectangular hysteresis loops, stress-annealing, Joule heating, and combined stress-annealed followed by conventional furnace annealing can substantially improve the GMI effect (by more than an order of magnitude).

Sensors ◽  
2019 ◽  
Vol 19 (21) ◽  
pp. 4767 ◽  
Author(s):  
Valentina Zhukova ◽  
Paula Corte-Leon ◽  
Mihail Ipatov ◽  
Juan Maria Blanco ◽  
Lorena Gonzalez-Legarreta ◽  
...  

Thin magnetic wires can present excellent soft magnetic properties (with coercivities up to 4 A/m), Giant Magneto-impedance effect, GMI, or rectangular hysteresis loops combined with quite fast domain wall, DW, propagation. In this paper we overview the magnetic properties of thin magnetic wires and post-processing allowing optimization of their magnetic properties for magnetic sensor applications. We concluded that the GMI effect, magnetic softness or DW dynamics of microwires can be tailored by controlling the magnetoelastic anisotropy of as-prepared microwires or controlling their internal stresses and domain structure by appropriate thermal treatment.


2016 ◽  
Vol 5 (3) ◽  
pp. 63
Author(s):  
V. Zhukova ◽  
A. Talaat ◽  
M. Ipatov ◽  
A. Granovsky ◽  
A. Zhukov

We present our studies of the factors affecting soft magnetic properties and giant magnetoimpedance effect in thin amorphous and nanocrystalline microwires. We showed that the magnetoelastic anisotropy is one of the most important parameters that determine magnetic softness and GMI effect of glass-coated microwires  and annealing can be very effective for manipulation the magnetic properties of amorphous ferromagnetic glass-coated microwires. Considerable magnetic softening and increasing of the GMI effect is observed in Fe-rich nanocrystalline FINEMET-type glass-coated microwires after the nanocrystallization.


Chemosensors ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 100
Author(s):  
Valentina Zhukova ◽  
Paula Corte-Leon ◽  
Juan Maria Blanco ◽  
Mihail Ipatov ◽  
Julian Gonzalez ◽  
...  

Applications in security and electronic surveillance require a combination of excellent magnetic softness with good mechanical and anticorrosive properties and low dimensionality. We overviewed the feasibility of using glass-coated microwires for electronic article surveillance and security applications, as well as different routes of tuning the magnetic properties of individual microwires or microwire arrays, making them quite attractive for electronic article surveillance and security applications. We provide the routes for tuning the hysteresis loops’ nonlinearity by the magnetostatic interaction between the microwires in the arrays of different types of amorphous microwires. The presence of neighboring microwire (either Fe- or Co-based) significantly affects the hysteresis loop of the whole microwires array. In a microwires array containing magnetically bistable microwires, we observed splitting of the initially rectangular hysteresis loop with a number of Barkhausen jumps correlated with the number of magnetically bistable microwires. Essentially, nonlinear and irregular hysteresis loops have been observed in mixed arrays containing Fe- and Co-rich microwires. The obtained nonlinearity in hysteresis loops allowed to increase the harmonics and tune their magnetic field dependencies. On the other hand, several routes allowing to tune the switching field by either postprocessing or modifying the magnetoelastic anisotropy have been reviewed. Nonlinear hysteresis loops have been also observed upon devitrification of amorphous microwires. Semihard magnetic microwires have been obtained by annealing of Fe–Pt–Si microwires. The observed unique combination of magnetic properties together with thin dimensions and excellent mechanical and anticorrosive properties provide excellent perspectives for the use of glass-coated microwires for security and electronic surveillance applications.


Processes ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 1006
Author(s):  
Valentina Zhukova ◽  
Paula Corte-Leon ◽  
Lorena González-Legarreta ◽  
Ahmed Talaat ◽  
Juan Maria Blanco ◽  
...  

The influence of post-processing conditions on the magnetic properties of amorphous and nanocrystalline microwires has been thoroughly analyzed, paying attention to the influence of magnetoelastic, induced and magnetocrystalline anisotropies on the hysteresis loops of Fe-, Ni-, and Co-rich microwires. We showed that magnetic properties of glass-coated microwires can be tuned by the selection of appropriate chemical composition and geometry in as-prepared state or further considerably modified by appropriate post-processing, which consists of either annealing or glass-coated removal. Furthermore, stress-annealing or Joule heating can further effectively modify the magnetic properties of amorphous magnetic microwires owing to induced magnetic anisotropy. Devitrification of microwires can be useful for either magnetic softening or magnetic hardening of the microwires. Depending on the chemical composition of the metallic nucleus and on structural features (grain size, precipitating phases), nanocrystalline microwires can exhibit either soft magnetic properties or semi-hard magnetic properties. We demonstrated that the microwires with coercivities from 1 A/m to 40 kA/m can be prepared.


2016 ◽  
Vol 52 (5) ◽  
pp. 1-3 ◽  
Author(s):  
V. Zhukova ◽  
M. Churyukanova ◽  
S. Kaloshkin ◽  
V. Sudarchikova ◽  
M. Ipatov ◽  
...  

2020 ◽  
Vol 10 (3) ◽  
pp. 981 ◽  
Author(s):  
Paula Corte-León ◽  
Ahmed Talaat ◽  
Valentina Zhukova ◽  
Mihail Ipatov ◽  
Juan María Blanco ◽  
...  

Stress-annealing enabled a considerable improvement in the GMI effect in both Fe- and Co-rich glass-coated microwires. Additionally, a remarkable magnetic softening can be achieved in stress-annealed Fe-rich microwires. Observed stress-annealing induced magnetic anisotropy is affected by annealing conditions (temperatures and stresses applied during annealing). The highest GMI ratio up to 310% was obtained in stress-annealed Co-rich microwires, although they presented rectangular hysteresis loops. A remarkable magnetic softness and improved GMI ratio over a wide frequency range were obtained in stress-annealed Fe-rich microwires. Irregular magnetic field dependence observed for some stress-annealing conditions is attributed to the contribution of both the inner axially magnetized core and outer shell, with transverse magnetic anisotropy.


2011 ◽  
Vol 10 (01n02) ◽  
pp. 301-305
Author(s):  
DEBABRATA MISHRA ◽  
A. PERUMAL ◽  
A. SRINIVASAN

We report the evolution of microstructure, domain structure, and soft magnetic properties of amorphous and nanocrystalline Fe 89-x Zr 11 B x(x = 0 - 10) alloys. High-resolution electron microscopy observations reveal that the annealed alloys exhibit a two-phase microstructure. Addition of B enhances the ferromagnetic properties of Fe – Zr amorphous phase in the two-phase structured microstructure, resulting in good soft magnetic properties. Large-sized domains with smooth domain walls are observed in the alloys annealed below 873 K, which exhibit excellent magnetic softness. On the other hand, in the alloys annealed above 873 K, small-sized domains with irregular domain walls and domain wall pinning by Fe – Zr compound are seen. The soft magnetic properties in Fe – Zr – B alloys not only depend on mean grain size, but also on the strength of the intergranular magnetic coupling and structural inhomogeneities.


Author(s):  
Valentina Zhukova ◽  
Paula Corte-León ◽  
Lorena Gonzalez-Legarreta ◽  
Ahmed Talaat ◽  
Juan Maria Blanco ◽  
...  

The influence of post-processing conditions on the magnetic properties of amorphous and nanocrystalline microwires have been thoroughly analyzed, paying attention on the influence of magnetoelastic, induced and magnetocrystalline anisotropies on the hysteresis loops of Fe-, Ni- and Co-rich microwires. We showed that magnetic properties of glass-coated microwires can be tuned by the selection of appropriate chemical composition and geometry in as-prepared state or further considerably modified by appropriate post-processing, which consists of either annealing or glass-coated removal. Furthermore, stress-annealing or Joule heating can further effectively modify the magnetic properties of amorphous magnetic microwires owing to induced magnetic anisotropy. Devitrification of microwires can be useful for either magnetic softening or magnetic hardening of the microwires. Depending on the chemical composition of the metallic nucleus and on structural features (grain size, precipitating phases) nanocrystalline microwires can exhibit either soft magnetic properties or semi-hard magnetic properties. We demonstrated that the microwires with coercivities from 1 A/m to 40 kA/m can be prepared.


1998 ◽  
Vol 22 (4_1) ◽  
pp. 186-189
Author(s):  
M. Matsumoto ◽  
A. Morisako ◽  
Y. Mutoh

Sign in / Sign up

Export Citation Format

Share Document