scholarly journals Label-Free Electrochemical Biosensor Based on Au@MoS₂–PANI for Escherichia coli Detection

Chemosensors ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 49
Author(s):  
Pushap Raj ◽  
Man Hwan Oh ◽  
Kyudong Han ◽  
Tae Yoon Lee

Bacterial infections have become a significant challenge in terms of public health, the food industry, and the environment. Therefore, it is necessary to address these challenges by developing a rapid, cost-effective, and easy-to-use biosensor for early diagnosis of bacterial pathogens. Herein, we developed a simple, label-free, and highly sensitive immunosensor based on electrochemical detection using the Au@MoS₂–PANI nanocomposite. The conductivity of the glassy carbon electrode is greatly enhanced using the Au@MoS₂–PANI nanocomposite and a self-assembled monolayer of mercaptopropionic acid on the gold nanoparticle surface was employed for the covalent immobilization of antibodies to minimize the nonspecific adsorption of bacterial pathogens on the electrode surface. The biosensor established a high selectivity and sensitivity with a low limit of detection of 10 CFU/mL, and detected Escherichia coli within 30 min. Moreover, the developed biosensor demonstrated a good linear detection range, practical utility in urine samples, and electrode regenerative studies.

Author(s):  
Wei-Jhen Wang ◽  
Chia-Hwa Lee ◽  
Chin-Wen Li ◽  
Stephen Liao ◽  
Fuh-Jyh Jan ◽  
...  

Abstract In this study, a label-free detection approach for effective detection of the odontoglossum ringspot virus (ORSV) infected orchids has been developed. We used semiconductor fabrication process to fabricate 1,810 micro/nano hybrid structured sensing electrodes on a 8 inch reclaimed wafer. The self-assembled monolayer (SAM) process was then employed to sequentially modify the electrode surface with 11-mercaptoundecanoic acid (11-MUA), 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC)/ N-hydroxysuccinimide (NHS), anti-ORSV, and ORSV. EIS was conducted for the ORSV concentration detection. Experimental results demonstrated that the ORSV concentration in a virus infected orchid leaf could be effectively detected. When compared with the ELISA kit, our device possesses a wider linear detection range (0.5–50,000 ng/mL) and a higher sensitivity. The specificity of our device on ORSV detection was also confirmed. Our sensing device retains advantages, such as label-free, lower amounts of the antibody and target sample required, low detection time, and a wider linear detection range. Those results imply the feasibility of our sensing device in field applications.


Biosensors ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 180
Author(s):  
Lucia Sarcina ◽  
Giuseppe Felice Mangiatordi ◽  
Fabrizio Torricelli ◽  
Paolo Bollella ◽  
Zahra Gounani ◽  
...  

The early detection of the human immunodeficiency virus (HIV) is of paramount importance to achieve efficient therapeutic treatment and limit the disease spreading. In this perspective, the assessment of biosensing assay for the HIV-1 p24 capsid protein plays a pivotal role in the timely and selective detection of HIV infections. In this study, multi-parameter-SPR has been used to develop a reliable and label-free detection method for HIV-1 p24 protein. Remarkably, both physical and chemical immobilization of mouse monoclonal antibodies against HIV-1 p24 on the SPR gold detecting surface have been characterized for the first time. The two immobilization techniques returned a capturing antibody surface coverage as high as (7.5 ± 0.3) × 1011 molecule/cm2 and (2.4 ± 0.6) × 1011 molecule/cm2, respectively. However, the covalent binding of the capturing antibodies through a mixed self-assembled monolayer (SAM) of alkanethiols led to a doubling of the p24 binding signal. Moreover, from the modeling of the dose-response curve, an equilibrium dissociation constant KD of 5.30 × 10−9 M was computed for the assay performed on the SAM modified surface compared to a much larger KD of 7.46 × 10−5 M extracted for the physisorbed antibodies. The chemically modified system was also characterized in terms of sensitivity and selectivity, reaching a limit of detection of (4.1 ± 0.5) nM and an unprecedented selectivity ratio of 0.02.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Nunzio Cennamo ◽  
Laura Pasquardini ◽  
Francesco Arcadio ◽  
Lia E. Vanzetti ◽  
Alessandra Maria Bossi ◽  
...  

AbstractThe development of optical biosensors for the rapid and costless determination of clinical biomarkers is of paramount importance in medicine. Here we report a fast and low-cost biosensor based on a plasmonic D-shaped plastic optical fibre (POF) sensor derivatized with an aptamer specific for the recognition of thrombin, the target marker of blood homeostasis and coagulation cascade. In particular, we designed a functional interface based on a Self Assembled Monolayer (SAM) composed of short Poly Ethylene Glycol (PEG) chains and biotin-modified PEG thiol in ratio 8:2 mol:mol, these latter serving as baits for the binding of the aptamer through streptavidin-chemistry. The SAM was studied by X-ray Photoelectron Spectroscopy (XPS) analysis, static contact angle (CA), Surface Plasmon Resonance (SPR) in POFs, and fluorescence microscopy on gold surface. The optimized SAM composition enabled the immobilization of about 112 ng/cm2 of aptamer. The thrombin detection exploiting POF-Aptasensor occurred in short times (5–10 minutes), the reached Limit of Detection (LOD) was about 1 nM, and the detection range was 1.6–60 nM, indicating the POF-Aptasensor well addresses the needs for a low-cost, simple to use and to realize, rapid, small size and portable diagnostic platform.


Author(s):  
Liuyang Hu ◽  
Bing Han ◽  
Qin Tong ◽  
Hui xiao ◽  
Donglin Cao

Background and Objective. Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, Streptococcus pneumoniae, Haemophilus influenzae, Staphylococcus aureus, Pseudomonas aeruginosa, and Mycobacterium tuberculosis are primary respiratory bacterial pathogens contributing to morbidity and mortality in developing countries. This study evaluated the diagnostic performance of multiplex real-time PCR with fluorescence melting curve analysis (MCA) assay, which was used to detect eight respiratory bacterial pathogens simultaneously. Methods. A total of 157 sputum specimens were examined by multiplex real-time with fluorescence MCA, and the results were compared with the conventional culture method. Results. Multiplex real-time PCR with fluorescence MCA specifically detected and differentiated eight respiratory bacterial pathogens by different melting curve peaks for each amplification product within 2 hours and exhibited high repeatability. The limit of detection ranged from 64 to 102 CFU/mL in the multiplex PCR system. Multiplex real-time PCR with fluorescence MCA showed a sensitivity greater than 80% and a 100% specificity for each pathogen. The kappa correlation of eight bacteria ranged from 0.89 to 1.00, and the coefficient of variation ranged from 0.05% to 0.80%. Conclusions. Multiplex real-time PCR with fluorescence MCA assay is a sensitive, specific, high-throughput, and cost-effective method to detect multiple bacterial pathogens simultaneously.


Toxins ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 274 ◽  
Author(s):  
Su-Ji Ha ◽  
Jin-Ho Park ◽  
Bobin Lee ◽  
Min-Gon Kim

Seafood is an emerging health food, and interest in improving the quality of seafood is increasing. Saxitoxin (STX) is a neurotoxin produced by marine dinoflagellates that is accumulated in seafood. It can block the neuronal transmission between nerves and muscle cell membranes, resulting in the disturbance of neuromuscular transmission and subsequent voluntary muscle paralysis. Here, we developed a new aptamer for the detection of STX using graphene oxide–systematic evolution of ligands by exponential enrichment (GO-SELEX). Furthermore, we confirmed sensitivity and selectivity of the developed aptamer specific to STX using a localized surface plasmon resonance (LSPR) sensor. The sensing chip was fabricated by fixing the new STX aptamer immobilized on the gold nanorod (GNR) substrate. The STX LSPR aptasensor showed a broad, linear detection range from 5 to 10,000 μg/L, with a limit of detection (LOD) of 2.46 μg/L (3σ). Moreover, it was suitable for the detection of STX (10, 100, and 2000 μg/L) in spiked mussel samples and showed a good recovery rate (96.13–116.05%). The results demonstrated that the new STX aptamer-modified GNR chip was sufficiently sensitive and selective to detect STX and can be applied to real samples as well. This LSPR aptasensor is a simple, label-free, cost-effective sensing system with a wide detectable range.


Author(s):  
Yang Li ◽  
Xianying Dai ◽  
Lin He ◽  
Yuyu Bu ◽  
Jin-Ping Ao

In this work, we develop a crystal-reconstructed-BiVO4 aptamer photoelectrochemical (PEC) biosensor by high-energy laser treatment technique. This biosensor achieves a limit of detection (LOD) (0.82 ag/mL), linear detection range (1...


2015 ◽  
Vol 799-800 ◽  
pp. 915-918
Author(s):  
M. Benounis ◽  
Nicole Jaffrezic ◽  
Isabelle Bonnamour ◽  
Nadhir Messai

A new SPR sensor surface based onself-assembled-Calix [4] arene-derivative-monolayer was proposed for the detection of sodium in water. The immobisation of claixarene onto the gold surface was confirmed by impedance spectroscopy (EIS). Three alkaliions were used K+, Na+and Ca2+and the influence of pH on ions detection was studied and optimized. The Calix [4] arene-gold SPR sensor developed was characterized by low limit of detection (LOD) for about 10-10M, high sensitivity and wide linear detection range between 10-6M and 10-14M.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2408
Author(s):  
Jingjing Zhang ◽  
Jialun Han ◽  
Shehong Feng ◽  
Chaoqun Niu ◽  
Chen Liu ◽  
...  

In this study, a target recycled amplification, background signal suppression, label-free fluorescent, enzyme-free deoxyribonucleic acid (DNA) machine was developed for the detection of adenosine triphosphate (ATP) in human urine. ATP and DNA fuel strands (FS) were found to trigger the operation of the DNA machine and lead to the cyclic multiplexing of ATP and the release of single stranded (SS) DNA. Double-stranded DNA (dsDNA) was formed on graphene oxide (GO) from the combination of SS DNA and complementary strands (CS′). These double strands then detached from the surface of the GO and in the process interacted with PicoGreen dye resulting in amplifying fluorescence intensity. The results revealed that the detection range of the DNA machine is from 100 to 600 nM (R2 = 0.99108) with a limit of detection (LOD) of 127.9 pM. A DNA machine circuit and AND-NOT-AND-OR logic gates were successfully constructed, and the strategy was used to detect ATP in human urine. With the advantage of target recycling amplification and GO suppressing background signal without fluorescent label and enzyme, this developed strategy has great potential for sensitive detection of different proteins and small molecules.


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 252
Author(s):  
Aamna Bibi ◽  
Sheng-Chieh Hsu ◽  
Wei-Fu Ji ◽  
Yi-Chi Cho ◽  
Karen S. Santiago ◽  
...  

In this present work, an electrochemical sensor was developed for the sensing of uric acid (UA). The sensor was based on a carbon paste electrode (CPE) modified with electroactive polyimide (EPI) synthesized using aniline tetramer (ACAT) decorated with reduced nanoparticles (NPs) of Au, Pt, and Ag. The initial step involved the preparation and characterization of ACAT. Subsequently, the ACAT-based EPI synthesis was performed by chemical imidization of its precursors 4,4′-(4.4′-isopropylidene-diphenoxy) bis (phthalic anhydride) BPADA and ACAT. Then, EPI was doped with distinctive particles of Ag, Pt and Au, and the doped EPIs were abbreviated as EPIS, EPIP and EPIG, respectively. Their structures were characterized by XRD, XPS, and TEM, and the electrochemical properties were determined by cyclic voltammetry and chronoamperometry. Among these evaluated sensors, EPI with Au NPs turned out the best with a sensitivity of 1.53 uA uM−1 UA, a low limit of detection (LOD) of 0.78 uM, and a linear detection range (LDR) of 5–50 uM UA at a low potential value of 310 mV. Additionally, differential pulse voltammetric (DPV) analysis showed that the EPIG sensor showed the best selectivity for a tertiary mixture of UA, dopamine (DA), and ascorbic acid (AA) as compared to EPIP and EPIS.


Sign in / Sign up

Export Citation Format

Share Document