scholarly journals Multi-Decadal Trend and Decadal Variability of the Regional Sea Level over the Indian Ocean since the 1960s: Roles of Climate Modes and External Forcing

Climate ◽  
2018 ◽  
Vol 6 (2) ◽  
pp. 51 ◽  
Author(s):  
Weiqing Han ◽  
Detlef Stammer ◽  
Gerald Meehl ◽  
Aixue Hu ◽  
Frank Sienz ◽  
...  
2017 ◽  
Vol 30 (21) ◽  
pp. 8447-8468 ◽  
Author(s):  
Weiqing Han ◽  
Gerald A. Meehl ◽  
Aixue Hu ◽  
Jian Zheng ◽  
Jessica Kenigson ◽  
...  

Previous studies have investigated the centennial and multidecadal trends of the Pacific and Indian Ocean Walker cells (WCs) during the past century, but have obtained no consensus owing to data uncertainties and weak signals of the long-term trends. This paper focuses on decadal variability (periods of one to few decades) by first documenting the variability of the WCs and warm-pool convection, and their covariability since the 1960s, using in situ and satellite observations and reanalysis products. The causes for the variability and covariability are then explored using a Bayesian dynamic linear model, which can extract nonstationary effects of climate modes. The warm-pool convection exhibits apparent decadal variability, generally covarying with the Indian and Pacific Ocean WCs during winter (November–April) with enhanced convection corresponding to intensified WCs, and the Indian–Pacific WCs covary. During summer (May–October), the warm-pool convection still highly covaries with the Pacific WC but does not covary with the Indian Ocean WC, and the Indian–Pacific WCs are uncorrelated. The wintertime coherent variability results from the vital influence of ENSO decadal variation, which reduces warm-pool convection and weakens the WCs during El Niño–like conditions. During summer, while ENSO decadal variability still dominates the Pacific WC, decadal variations of ENSO, the Indian Ocean dipole, Indian summer monsoon convection, and tropical Indian Ocean SST have comparable effects on the Indian Ocean WC overall, with monsoon convection having the largest effect since the 1990s. The complex causes for the Indian Ocean WC during summer result in its poor covariability with the Pacific WC and warm-pool convection.


2017 ◽  
Vol 30 (6) ◽  
pp. 1971-1983 ◽  
Author(s):  
Lu Dong ◽  
Michael J. McPhaden

Abstract Both the Indian and Pacific Oceans exhibit prominent decadal time scale variations in sea surface temperature (SST), linked dynamically via atmospheric and oceanic processes. However, the relationship between SST in these two basins underwent a dramatic transformation beginning around 1985. Prior to that, SST variations associated with the Indian Ocean basin mode (IOB) and the interdecadal Pacific oscillation (IPO) were positively correlated, whereas afterward they were much less clearly synchronized. Evidence is presented from both observations and coupled state-of-the-art climate models that enhanced external forcing, particularly from increased anthropogenic greenhouse gases, was the principal cause of this changed relationship. Using coupled climate model experiments, it is shown that without external forcing, the evolution of the IOB would be strongly forced by variations in the IPO. However, with strong external forcing, the dynamical linkage between the IOB and the IPO weakens so that the negative phase IPO after 2000 is unable to force a negative phase IOB-induced cooling of the Indian Ocean. This changed relationship in the IOB and IPO led to unique SST patterns in the Indo-Pacific region after 2000, which favored exceptionally strong easterly trade winds over the tropical Pacific Ocean and a pronounced global warming hiatus in the first decade of the twenty-first century.


2022 ◽  
Author(s):  
Abhisek Chatterjee ◽  
Sajidh C K

Abstract The regional sea level variability and its projection amidst the global sea level rise is one of the major concerns for coastal communities. The dynamic sea level plays a major role in the observed spatial deviations in regional sea level rise from the global mean. The present study evaluates 27 climate model simulations from the sixth phase of the coupled model intercomparison project (CMIP6) for their representation of the historical mean states, variability and future projections for the Indian Ocean. Most models reproduce the observed mean state of the dynamic sea level realistically, however consistent positive bias is evident across the latitudinal range of the Indian Ocean. The strongest sea level bias is seen along the Antarctic Circumpolar Current (ACC) regime owing to the stronger than observed south Indian Ocean westerlies and its equatorward bias. Further, this equatorward shift of the wind field resulted in stronger positive windstress curl across the southeasterly trade winds in the southern tropical basin and easterly wind bias along the equatorial waveguide. These anomalous easterly equatorial winds cause upwelling in the eastern part of the basin and keeps the thermocline shallower in the model than observed, resulted in enhanced variability for the dipole zonal mode or Indian Ocean dipole in the tropics. In the north Indian Ocean, the summer monsoon winds are weak in the model causing weaker upwelling and positive sea level bias along the western Arabian Sea. The high-resolution models compare better in simulating the sea level variability, particularly in the eddy dominated regions like the ACC regime in interannual timescale. However, these improved variabilities do not necessarily produce a better mean state likely due to the enhanced mixing driven by parametrizations set in these high-resolution models. Finally, the overall pattern of the projected dynamic sea level rise is found to be similar for the mid (SSP2-4.5) and high-end (SSP5-8.5) scenarios, except that the magnitude is higher under the high emission situation. Notably, the projected dynamic sea level change is found to be milder when only the best performing models are used compared to the full ensemble.


2021 ◽  
Author(s):  
Weiqing Han ◽  
Lei Zhang ◽  
Gerald Meehl ◽  
Shoichiro Kido ◽  
Tomoki Tozuka ◽  
...  

Abstract The low-lying coastal and island regions are vulnerable to sea level rise and extreme events. Compounded by marine heatwaves, sea level extremes have devastating impacts on coastal community and marine ecosystems. As long tide gauge records are sparse, sea level extremes around Indonesia are poorly understood, and the Compound Height-Heat EXtreme (C-HHEX) events remain unexplored. Here we combine in situ and satellite observations with model simulations, to investigate the long-lasting (>1 month) sea level extremes and C-HHEXs along Indonesian coasts of the Indian Ocean since the 1960s. We find that 90% (80%) of the extreme sea level (C-HHEX) events, with a maximum monthly sea level anomaly of 0.45m, are clustered in an 8yr period of 2010-2017, due to anthropogenic global sea level rise and decadal enhancement driven by changing surface winds associated with a combined invigoration of the Indian and Pacific Walker Cells, atmospheric overturning circulations in east-west direction. Remote and local surface wind anomalies associated with negative phases of the Indian Ocean Dipole (IOD) - enhanced by La Niña – drive individual C-HHEX events under a precondition of shallow thermocline (a region of subsurface ocean with temperature decreases rapidly downward). By contrast, winds associated with monsoon and its intraseasonal oscillations force the sea level alone events under a deep thermocline condition. We conclude that the shoaling thermocline in eastern Indian Ocean under anthropogenic warming and global sea level rise favorably precondition the ocean for stronger and more frequent sea level extremes and C-HHEXs, increasing the environmental stress on Indonesia.


2012 ◽  
Vol 42 (4) ◽  
pp. 602-627 ◽  
Author(s):  
Laurie L. Trenary ◽  
Weiqing Han

Abstract The relative importance of local versus remote forcing on intraseasonal-to-interannual sea level and thermocline variability of the tropical south Indian Ocean (SIO) is systematically examined by performing a suite of controlled experiments using an ocean general circulation model and a linear ocean model. Particular emphasis is placed on the thermocline ridge of the Indian Ocean (TRIO; 5°–12°S, 50°–80°E). On interannual and seasonal time scales, sea level and thermocline variability within the TRIO region is primarily forced by winds over the Indian Ocean. Interannual variability is largely caused by westward propagating Rossby waves forced by Ekman pumping velocities east of the region. Seasonally, thermocline variability over the TRIO region is induced by a combination of local Ekman pumping and Rossby waves generated by winds from the east. Adjustment of the tropical SIO at both time scales generally follows linear theory and is captured by the first two baroclinic modes. Remote forcing from the Pacific via the oceanic bridge has significant influence on seasonal and interannual thermocline variability in the east basin of the SIO and weak impact on the TRIO region. On intraseasonal time scales, strong sea level and thermocline variability is found in the southeast tropical Indian Ocean, and it primarily arises from oceanic instabilities. In the TRIO region, intraseasonal sea level is relatively weak and results from Indian Ocean wind forcing. Forcing over the Pacific is the major cause for interannual variability of the Indonesian Throughflow (ITF) transport, whereas forcing over the Indian Ocean plays a larger role in determining seasonal and intraseasonal ITF variability.


2021 ◽  
pp. 1-46
Author(s):  
Lei Zhang ◽  
Weiqing Han ◽  
Kristopher B. Karnauskas ◽  
Yuanlong Li ◽  
Tomoki Tozuka

AbstractThe subtropical Indian Ocean Dipole (SIOD) and Ningaloo Niño are the two dominant modes of interannual climate variability in the subtropical South Indian Ocean. Observations show that the SIOD has been weakening in the recent decades, while Ningaloo Niño has been strengthening. In this study, we investigate the causes for such changes by analyzing climate model experiments using the NCAR Community Earth System Model version 1 (CESM1). Ensemble-mean results from CESM1 large-ensemble (CESM1-LE) suggest that the external forcing causes negligible changes in the amplitudes of the SIOD and Ningaloo Niño, suggesting a dominant role of internal climate variability. Meanwhile, results from CESM1 pacemaker experiments reveal that the observed changes in the two climate modes cannot be attributed to the effect of sea surface temperature anomalies (SSTA) in either the tropical Pacific or tropical Indian Oceans. By further comparing different ensemble members from the CESM1-LE, we find that a Warm Pool Dipole mode of decadal variability, with opposite SSTA in the southeast Indian Ocean and the western-central tropical Pacific Ocean plays an important role in driving the observed changes in the SIOD and Ningaloo Niño. These changes in the two climate modes have considerable impacts on precipitation and sea level variabilities in the South Indian Ocean region.


2013 ◽  
Vol 10 (10) ◽  
pp. 6677-6698 ◽  
Author(s):  
J. C. Currie ◽  
M. Lengaigne ◽  
J. Vialard ◽  
D. M. Kaplan ◽  
O. Aumont ◽  
...  

Abstract. The Indian Ocean Dipole (IOD) and the El Niño/Southern Oscillation (ENSO) are independent climate modes, which frequently co-occur, driving significant interannual changes within the Indian Ocean. We use a four-decade hindcast from a coupled biophysical ocean general circulation model, to disentangle patterns of chlorophyll anomalies driven by these two climate modes. Comparisons with remotely sensed records show that the simulation competently reproduces the chlorophyll seasonal cycle, as well as open-ocean anomalies during the 1997/1998 ENSO and IOD event. Results suggest that anomalous surface and euphotic-layer chlorophyll blooms in the eastern equatorial Indian Ocean in fall, and southern Bay of Bengal in winter, are primarily related to IOD forcing. A negative influence of IOD on chlorophyll concentrations is shown in a region around the southern tip of India in fall. IOD also depresses depth-integrated chlorophyll in the 5–10° S thermocline ridge region, yet the signal is negligible in surface chlorophyll. The only investigated region where ENSO has a greater influence on chlorophyll than does IOD, is in the Somalia upwelling region, where it causes a decrease in fall and winter chlorophyll by reducing local upwelling winds. Yet unlike most other regions examined, the combined explanatory power of IOD and ENSO in predicting depth-integrated chlorophyll anomalies is relatively low in this region, suggestive that other drivers are important there. We show that the chlorophyll impact of climate indices is frequently asymmetric, with a general tendency for larger positive than negative chlorophyll anomalies. Our results suggest that ENSO and IOD cause significant and predictable regional re-organisation of chlorophyll via their influence on near-surface oceanography. Resolving the details of these effects should improve our understanding, and eventually gain predictability, of interannual changes in Indian Ocean productivity, fisheries, ecosystems and carbon budgets.


Sign in / Sign up

Export Citation Format

Share Document