scholarly journals Analysis of Climate Change in the Caucasus Region: End of the 20th–Beginning of the 21st Century

Climate ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 11 ◽  
Author(s):  
Alla Tashilova ◽  
Boris Ashabokov ◽  
Lara Kesheva ◽  
Nataliya Teunova

The study of climate, in such a diverse climatic region as the Caucasus, is necessary in order to evaluate the influence of local factors on the formation of temperature and precipitation regimes in its various climatic zones. This study is based on the instrumental data (temperatures and precipitation) from 20 weather stations, located on the territory of the Caucasian region during 1961–2011. Mathematical statistics, trend analysis, and rescaled range Methods were used. It was found that the warming trend prevailed in all climatic zones, it intensified since the beginning of global warming (since 1976), while the changes in precipitation were not so unidirectional. The maximum warming was observed in the summer (on average by 0.3 °C/10 years) in all climatic zones. Persistence trends were investigated using the Hurst exponent H (range of variation 0–1), which showed a higher trend persistence of annual mean temperature changes (H = 0.8) compared to annual sum precipitations (H = 0.64). Spatial-correlation analysis performed for precipitations and temperatures showed a rapid decrease in the correlation between precipitations at various weather stations from R = 1 to R = 0.5, on a distance scale from 0 to 200 km. In contrast to precipitation, a high correlation (R = 1.0–0.7) was observed between regional weather stations temperatures at a distance scale from 0 to 1000 km, which indicates synchronous temperature changes in all climatic zones (unlike precipitation).

Urban Science ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 27
Author(s):  
Lahouari Bounoua ◽  
Kurtis Thome ◽  
Joseph Nigro

Urbanization is a complex land transformation not explicitly resolved within large-scale climate models. Long-term timeseries of high-resolution satellite data are essential to characterize urbanization within land surface models and to assess its contribution to surface temperature changes. The potential for additional surface warming from urbanization-induced land use change is investigated and decoupled from that due to change in climate over the continental US using a decadal timescale. We show that, aggregated over the US, the summer mean urban-induced surface temperature increased by 0.15 °C, with a warming of 0.24 °C in cities built in vegetated areas and a cooling of 0.25 °C in cities built in non-vegetated arid areas. This temperature change is comparable in magnitude to the 0.13 °C/decade global warming trend observed over the last 50 years caused by increased CO2. We also show that the effect of urban-induced change on surface temperature is felt above and beyond that of the CO2 effect. Our results suggest that climate mitigation policies must consider urbanization feedback to put a limit on the worldwide mean temperature increase.


2012 ◽  
Vol 27 (2) ◽  
pp. 74-78 ◽  
Author(s):  
E. I. Eremenko ◽  
A. G. Ryazanova ◽  
O. I. Tsygankova ◽  
E. A. Tsygankova ◽  
N. P. Buravtseva ◽  
...  

2009 ◽  
Vol 50 (50) ◽  
pp. 126-134 ◽  
Author(s):  
Johanna Nemec ◽  
Philippe Huybrechts ◽  
Oleg Rybak ◽  
Johannes Oerlemans

AbstractWe have reconstructed the annual balance of Vadret da Morteratsch, Engadine, Switzerland, with a two-dimensional energy-balance model for the period 1865–2005. The model takes into account a parameterization of the surface energy fluxes, an albedo that decreases exponentially with snow depth as well as the shading effect of the surrounding mountains. The model was first calibrated with a 5 year record of annual balance measurements made at 20 different sites on the glacier between 2001 and 2006 using meteorological data from surrounding weather stations as input. To force the model for the period starting in 1865, we employed monthly temperature and precipitation records from nearby valley stations. The model reproduces the observed annual balance reasonably well, except for the lower part during the warmest years. Most crucial to the results is the altitudinal precipitation gradient, but this factor is hard to quantify from the limited precipitation data at high elevations. The simulation shows an almost continuous mass loss since 1865, with short interruptions around 1920, 1935 and 1980. A trend towards a more negative annual balance can be observed since the beginning of the 1980s. The simulated cumulative mass balance for the entire period 1865–2005 was found to be –46mw.e.


2012 ◽  
Vol 106 (3) ◽  
pp. 379-381 ◽  
Author(s):  
Yishai Haimi Cohen ◽  
Nechama Shalva ◽  
Tal Markus-Eidlitz ◽  
Menachem Sadeh ◽  
Ron Dabby ◽  
...  

2021 ◽  
pp. 102973
Author(s):  
Elena V. Belyaeva ◽  
Vyacheslav E. Shchelinsky
Keyword(s):  

2021 ◽  
pp. 55-72
Author(s):  
Boris Azretaliyevich Ashabokov ◽  
Lyudmila Mikhailovna Fedchenko ◽  
Lara Asirovna Kesheva ◽  
Nanaliya Vyacheslavovna Teunova

Sign in / Sign up

Export Citation Format

Share Document