scholarly journals Glacio-Nival Regime Creates Complex Relationships between Discharge and Climatic Trends of Zackenberg River, Greenland (1996–2019)

Climate ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 59
Author(s):  
Karlijn Ploeg ◽  
Fabian Seemann ◽  
Ann-Kathrin Wild ◽  
Qiong Zhang

Arctic environments experience rapid climatic changes as air temperatures are rising and precipitation is increasing. Rivers are key elements in these regions since they drain vast land areas and thereby reflect various climatic signals. Zackenberg River in northeast Greenland provides a unique opportunity to study climatic influences on discharge, as the river is not connected to the Greenland ice sheet. The study aims to explain discharge patterns between 1996 and 2019 and analyse the discharge for correlations to variations in air temperature and both solid and liquid precipitation. The results reveal no trend in the annual discharge. A lengthening of the discharge period is characterised by a later freeze-up and extreme discharge peaks are observed almost yearly between 2005 and 2017. A positive correlation exists between the length of the discharge period and the Thawing Degree Days (r=0.52,p<0.01), and between the total annual discharge and the annual maximum snow depth (r=0.48,p=0.02). Thereby, snowmelt provides the main source of discharge in the first part of the runoff season. However, the influence of precipitation on discharge could not be fully identified, because of uncertainties in the data and possible delays in the hydrological system. This calls for further studies on the relationship between discharge and precipitation. The discharge patterns are also influenced by meltwater from the A.P. Olsen ice cap and an adjacent glacier-dammed lake which releases outburst floods. Hence, this mixed hydrological regime causes different relationships between the discharge and climatic trends when compared to most Arctic rivers.

Author(s):  
Patrick J. Applegate ◽  
K. Keller

Engineering the climate through albedo modification (AM) could slow, but probably would not stop, melting of the Greenland Ice Sheet. Albedo modification is a technology that could reduce surface air temperatures through putting reflective particles into the upper atmosphere. AM has never been tested, but it might reduce surface air temperatures faster and more cheaply than reducing greenhouse gas emissions. Some scientists claim that AM would also prevent or reverse sea-level rise. But, are these claims true? The Greenland Ice Sheet will melt faster at higher temperatures, adding to sea-level rise. However, it's not clear that reducing temperatures through AM will stop or reverse sea-level rise due to Greenland Ice Sheet melting. We used a computer model of the Greenland Ice Sheet to examine its contributions to future sea level rise, with and without AM. Our results show that AM would probably reduce the rate of sea-level rise from the Greenland Ice Sheet. However, sea-level rise would likely continue even with AM, and the ice sheet would not regrow quickly. Albedo modification might buy time to prepare for sea-level rise, but problems could arise if policymakers assume that AM will stop sea-level rise completely.


1993 ◽  
Vol 159 ◽  
pp. 109-114
Author(s):  
R.J Braithwaite

Firn temperatures and meltwater refreezing are studied in the lower accumulation area of the Greenland ice sheet as part of an international project on sea level changes. In the study area, 1440–1620 m a.s.l., meltwater penetrates several metres into the firn and refreezes, warming the firn by 5–7°C compared with annual air temperatures. This firn warming is closely related to surface melt which can be estimated by several methods. A relatively high degree-day factor is needed to account for the melt rates found.


2016 ◽  
Vol 10 (2) ◽  
pp. 477-496 ◽  
Author(s):  
Marco Tedesco ◽  
Sarah Doherty ◽  
Xavier Fettweis ◽  
Patrick Alexander ◽  
Jeyavinoth Jeyaratnam ◽  
...  

Abstract. The surface energy balance and meltwater production of the Greenland ice sheet (GrIS) are modulated by snow and ice albedo through the amount of absorbed solar radiation. Here we show, using space-borne multispectral data collected during the 3 decades from 1981 to 2012, that summertime surface albedo over the GrIS decreased at a statistically significant (99 %) rate of 0.02 decade−1 between 1996 and 2012. Over the same period, albedo modelled by the Modèle Atmosphérique Régionale (MAR) also shows a decrease, though at a lower rate ( ∼ −0.01 decade−1) than that obtained from space-borne data. We suggest that the discrepancy between modelled and measured albedo trends can be explained by the absence in the model of processes associated with the presence of light-absorbing impurities. The negative trend in observed albedo is confined to the regions of the GrIS that undergo melting in summer, with the dry-snow zone showing no trend. The period 1981–1996 also showed no statistically significant trend over the whole GrIS. Analysis of MAR outputs indicates that the observed albedo decrease is attributable to the combined effects of increased near-surface air temperatures, which enhanced melt and promoted growth in snow grain size and the expansion of bare ice areas, and to trends in light-absorbing impurities (LAI) on the snow and ice surfaces. Neither aerosol models nor in situ and remote sensing observations indicate increasing trends in LAI in the atmosphere over Greenland. Similarly, an analysis of the number of fires and BC emissions from fires points to the absence of trends for such quantities. This suggests that the apparent increase of LAI in snow and ice might be related to the exposure of a "dark band" of dirty ice and to increased consolidation of LAI at the surface with melt, not to increased aerosol deposition. Albedo projections through to the end of the century under different warming scenarios consistently point to continued darkening, with albedo anomalies averaged over the whole ice sheet lower by 0.08 in 2100 than in 2000, driven solely by a warming climate. Future darkening is likely underestimated because of known underestimates in modelled melting (as seen in hindcasts) and because the model albedo scheme does not currently include the effects of LAI, which have a positive feedback on albedo decline through increased melting, grain growth, and darkening.


2019 ◽  
Vol 66 (255) ◽  
pp. 166-174 ◽  
Author(s):  
Thomas Schaap ◽  
Michael J. Roach ◽  
Leo E. Peters ◽  
Sue Cook ◽  
Bernd Kulessa ◽  
...  

AbstractGround-penetrating radar data acquired in the 2016/17 austral summer on Sørsdal Glacier, East Antarctica, provide evidence for meltwater lenses within porous surface ice that are conceptually similar to firn aquifers observed on the Greenland Ice Sheet and the Arctic and Alpine glaciers. These englacial water bodies are associated with a dry relict surface basin and consistent with perennial drainage into an interconnected englacial drainage system, which may explain a large englacial outburst flood observed in satellite imagery in the early 2016/17 melt season. Our observations indicate the rarely-documented presence of an englacial hydrological system in Antarctica, with implications for the storage and routing of surface meltwater. Future work should ascertain the spatial prevalence of such systems around the Antarctic coastline, and identify the degree of surface runoff redistribution and storage in the near surface, to quantify their impact on surface mass balance.


2020 ◽  
Author(s):  
Samuel Doyle ◽  
Bryn Hubbard ◽  
Poul Christoffersen ◽  
Marion Bougamont ◽  
Robert Law ◽  
...  

&lt;p&gt;Glacier motion is resisted by basal traction that can be reduced significantly by pressurised water at the ice-bed interface. Few records of subglacial water pressure have been collected from fast-flowing, marine-terminating glaciers despite such glaciers accounting for approximately half of total ice discharge from the Greenland Ice Sheet. &amp;#160;The paucity of such measurements is due to the practical challenges in drilling and instrumenting boreholes to the bed, in areas that are often heavily-crevassed, through rapidly-deforming ice that ruptures sensor cables within weeks. Here, we present pressure records and drilling observations from two sites located 30 km from the calving front of Store Glacier in West Greenland, where ice flow averages ~600 m yr&lt;sup&gt;-1&lt;/sup&gt;.&amp;#160; In 2018, boreholes were drilled 950 m to the bed near the margin of a large, rapidly-draining supraglacial lake. In 2019, multiple boreholes were drilled ~1030 m to the bed in the centre of the drained supraglacial lake, and in close proximity to a large, active moulin. All boreholes drained rapidly when they intersected or approached the ice-bed interface, which is commonly interpreted as indicating connection to an active subglacial drainage system. Neighbouring boreholes responded to the breakthrough of subsequent boreholes demonstrating hydrological or mechanical inter-connection over a distance of ~70 m. Differences in the time series of water pressure indicate that each borehole intersected a distinct component of the subglacial hydrological system. Boreholes located within 250 m of the moulin reveal clear diurnal cycles either in phase or anti-phase with moulin discharge. Pressure records from boreholes located on the lake margin, however, show smaller amplitude, and less distinct, diurnal cycles superimposed on longer-period (e.g. multiday) variability. We compare these datasets to those in the literature and investigate consistencies and inconsistencies with glacio-hydrological theory.&lt;/p&gt;


Author(s):  
Katja Laute ◽  
Achim A. Beylich

&lt;p&gt;In recent years, the number and size of glacial lakes in mountain regions have increased worldwide associated to the climate-induced glacier retreat and thinning. Glacial lakes can cause glacial lake outburst floods (GLOFs) which can pose a significant natural hazard in mountainous areas and can cause loss of human life as well as damage to infrastructure and property.&lt;/p&gt;&lt;p&gt;The glacial landscape of the Jostedalsbreen ice cap in south-western Norway is currently undergoing significant changes reflected by progressing glacier length changes of the outlet glaciers and the formation of new glacial lakes within the recently exposed glacier forefields. We present a new glacier area outline for the entire Jostedalsbreen ice cap and the first detailed inventory of glacial lakes which were formed within the newly exposed ice-free area at the Jostedalsbreen ice cap. In detail, we explore (i) the glacial lake characteristics and types and (ii) analyse their spatial distribution and hazard potential.&lt;/p&gt;&lt;p&gt;For the period from 1952-1985 to 2017/2018 the entire glacier area of the Jostdalsbreen ice cap experienced a loss of 79 km&lt;sup&gt;2&lt;/sup&gt;. A glacier area reduction of 10 km&lt;sup&gt;2&lt;/sup&gt; occurred since 1999-2006. Two percent of the recently exposed surface area (since 1952-1985) is currently covered with newly developed glacial lakes corresponding to a total number of 57 lakes. In addition, eleven lakes that already existed have enlarged in size. Four types of glacial lakes are identified including bedrock-dammed, bedrock- and moraine-dammed, moraine-dammed and ice-dammed lakes. Especially ice- or moraine-dammed glacial lakes can be the source of potentially catastrophic glacier lake outburst floods. According to the inventory of glacier-related hazardous events in Norway GLOFs represent the most common hazardous events besides ice avalanches and incidents related to glacier length changes. Around the Jostedalsbreen ice cap several historical but also recent events are documented. The majority of the events caused partly severe damage to farmland and infrastructure but fortunately no people have been harmed by today.&lt;/p&gt;&lt;p&gt;Due to the predicted increase in summer temperatures for western Norway until the end of this century, it is very likely that the current trend of an accelerated mass loss of Norwegian glaciers will continue. As one consequence of this development, further new lakes will emerge within the newly exposed terrain. The development of new glacial lakes has diverse regional and global socio-economic implications. Especially in mainland Norway, where glaciers and glacier-fed streams have a high importance for hydropower production, tourism and climate research it is essential to gain a better understanding of the possible impacts of glacial lakes for being prepared for risks but also advantages arising from these newly emerging landscape elements.&lt;/p&gt;


2020 ◽  
Author(s):  
Jade Bowling ◽  
Amber Leeson ◽  
Malcolm McMillan ◽  
Stephen Livingstone ◽  
Andrew Sole

&lt;p&gt;A total of 63 subglacial lakes have been documented beneath the Greenland Ice Sheet using a combination of radio-echo sounding and surface elevation change measurements. Of these, only 7 lakes have shown evidence of hydrological activity over the period 2001-2018. Draining lakes have been observed to drive transient changes in local ice flow speeds in Antarctica. The sudden discharge of water during a subglacial lake outburst event causes the subglacial lake roof to subside, which propagates to the surface, resulting in the formation of collapse basins (typically ~50-70 m in depth). These surface features can be detected using remote sensing techniques.&lt;/p&gt;&lt;p&gt;Whilst over 100 active subglacial lakes have been identified in Antarctica, predominantly beneath ice streams, little is known about the extent, volume of water stored and residence times of active subglacial lakes in Greenland, together with any potential influence of drainage events on local ice dynamics and sediment evacuation rates. Here, we explore the potential of the high resolution ArcticDEM stereogrammetric digital surface model (DSM) open source dataset, generated from satellite optical imagery, to identify and monitor subglacial lake-derived collapse basins. The ArcticDEM provides 2 m time-stamped surface elevation data, covering ~160 million km&lt;sup&gt;2&lt;/sup&gt;, offering an exciting opportunity to map elevation changes between 2009-2017. This study presents the first effort to utilise ArcticDEM data at an ice-sheet scale to identify and monitor active subglacial lakes beneath the Greenland Ice Sheet, which we hope will ultimately improve our understanding of its complex subglacial hydrological system.&lt;/p&gt;


1955 ◽  
Vol 2 (18) ◽  
pp. 571-582 ◽  
Author(s):  
R. Haefeli ◽  
F. Brentani

AbstractIn the approximately so m. thick ice cap of the Jungfraujoch (3470 m. above sea level), where the temperature throughout lies below the pressure melting point, continual measurements of displacement and deformation were carried out inside ice tunnels from 1950 onwards. These give an insight into the process of movement, the formation of water-filled crevasses and the relationships of viscosity in a cold ice cap glacier.The plastic behaviour of the cold ice was examined through alterations in length of individual tunnels, and also through measured distortions of cross-section in circular sections of tunnel. Since the mean ice temperature in the region of the ice tunnel lies approximately between −1° and −3° C., these examinations provide a welcome supplement to analogous measurements which were taken in circular tunnels in a temperate glacier (Z’Mutt tunnel). The approximate calculation of the plastic deformation of a circular tunnel was thus extended by the obvious transformation of solutions known from elasticity theory.By means of a qualitative analysis of the state of stress of an ice cap, an attempt is made to account for the distortion and the formation of the cracks and crevasses which were observed. The occurrence of blue bands could be followed in statu nascendi. This paper serves as a primary orientation and publishes some initial results of the examinations which are to be continued and completed over a number of years. In addition to its potentialities for practical use, this study may be of interest in respect to the behaviour of cold glaciers of the Arctic and Antarctic. In a final section, therefore, some problems of the Greenland ice sheet are considered in the light of the preceding conclusions.


2021 ◽  
Author(s):  
Amy J. Jenson ◽  
Jason M. Amundson ◽  
Jonathan Kingslake ◽  
Eran Hood

Abstract. We combine a glacier outburst flood model with a glacier flow model to investigate decadal to centennial variations in outburst floods originating from ice-dammed marginal basins. Marginal basins form due to retreat and detachment of tributary glaciers, a process that often results in remnant ice being left behind. The remnant ice, which can act like an ice shelf or break apart into a pack of icebergs, limits the basin storage capacity but also exerts pressure on the underlying water and promotes drainage. We find that during glacier retreat there is a strong, nearly linear relationship between flood water volume and peak discharge for individual basins, despite large changes in glacier and remnant ice volumes that are expected to impact flood hydrographs. Consequently, peak discharge increases over time as long as there is remnant ice remaining in a basin, the peak discharge begins to decrease once a basin becomes ice free, and similar size outburst floods can occur for very different glacier volumes. We also find that the temporal variability in outburst flood magnitude depends on how the floods initiate. Basins that connect to the subglacial hydrological system only after reaching flotation yield greater long-term variability in outburst floods than basins that are continuously connected to the subglacial hydrological system (and therefore release floods that initiate before reaching flotation). Our results highlight the importance of improving our understanding of both changes in basin geometry and outburst flood initiation mechanisms in order to better assess outburst flood hazards and impacts on landscape and ecosystem evolution.


2022 ◽  
Author(s):  
Qi Liang ◽  
Wanxin Xiao ◽  
Ian Howat ◽  
Xiao Cheng ◽  
Fengming Hui ◽  
...  

Abstract. The generation, transport, storage and drainage of meltwater beneath the ice sheet play important roles in the Greenland ice sheet (GrIS) system. Active subglacial lakes, common features in Antarctica, have recently been detected beneath GrIS and may impact ice sheet hydrology. Despite their potential importance, few repeat subglacial lake filling and drainage events have been identified under Greenland Ice Sheet. Here we examine the surface elevation change of a collapse basin at the Flade Isblink ice cap, northeast Greenland, which formed due to sudden subglacial lake drainage in 2011. We estimate the subglacial lake volume evolution using multi-temporal ArcticDEM data and ICESat-2 altimetry data acquired between 2012 and 2021. Our long-term observations show that the subglacial lake was continuously filled by surface meltwater, with basin surface rising by up to 55 m during 2012–2021 and we estimate 138.2 × 106 m3 of meltwater was transported into the subglacial lake between 2012 and 2017. A second rapid drainage event occurred in late August 2019, which induced an abrupt ice dynamic response. Comparison between the two drainage events shows that the 2019 drainage released much less water than the 2011 event. We conclude that multiple factors, e.g., the volume of water stored in the subglacial lake and bedrock relief, regulate the episodic filling and drainage of the lake. By comparing the surface meltwater production and the subglacial lake volume change, we find only ~64 % of the surface meltwater successfully descended to the bed, suggesting potential processes such as meltwater refreezing and firn aquifer storage, need to be further quantified.


Sign in / Sign up

Export Citation Format

Share Document