scholarly journals Road Salt Damage to Historical Milestones Indicates Adaptation of Winter Roads to Future Climate Change May Damage Arctic Cultural Heritage

Climate ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 149
Author(s):  
Hans Antonson ◽  
Philip Buckland ◽  
Göran Blomqvist

There is no doubt that anthropogenic global warming is accelerating damage to cultural heritage. Adaptation measures are required to reduce the loss of sites, monuments and remains. However, little research has been directed towards understanding potential impacts of climate adaptation measures in other governmental sectors on cultural heritage. We provide a case study demonstrating that winter road salt, used to reduce ice related accidents, damages historical iron milestones. As the climate warms, road salt use will move north into areas where sites have been protected by contiguous winter snow cover. This will expose Artic/sub-Arctic cultural heritage, including Viking graves and Sami sites, to a new anthropogenic source of damage. Research and planning should therefore include the evaluation of secondary impacts when choosing climate adaptation strategies.

2012 ◽  
Vol 24 (1) ◽  
pp. 197-213 ◽  
Author(s):  
Anika Nasra Haque ◽  
Stelios Grafakos ◽  
Marijk Huijsman

Dhaka is one of the largest megacities in the world and its population is growing rapidly. Due to its location on a deltaic plain, the city is extremely prone to detrimental flooding, and risks associated with this are expected to increase further in the coming years due to global climate change impacts as well as the high rate of urbanization the city is facing. The lowest-lying part of Dhaka, namely Dhaka East, is facing the most severe risk of flooding. Traditionally, excess water in this part of the city was efficiently stored in water ponds and gradually drained into rivers through connected canals. However, the alarming increase in Dhaka’s population is causing encroachment of these water retention areas because of land scarcity. The city’s natural drainage is not functioning well and the area is still not protected from flooding, which causes major threats to its inhabitants. This situation increases the urgency to adapt effectively to current flooding caused by climate variability and also to the impacts of future climate change. Although the government is planning several adaptive measures to protect the area from floods, a systematic framework to analyze and assess them is lacking. The objective of this paper is to develop an integrated framework for the assessment and prioritization of various (current and potential) adaptation measures aimed at protecting vulnerable areas from flooding. The study identifies, analyzes, assesses and prioritizes adaptive initiatives and measures to address flood risks in the eastern fringe area, and the adaptation assessment is conducted within the framework of multi-criteria analysis (MCA) methodology. MCA facilitates the participation of stakeholders and hence allows normative judgements, while incorporating technical expertise in the adaptation assessment. Based on the assessment, adaptive measures are prioritized to indicate which actions should be implemented first. Such a participatory integrated assessment of adaptation options is currently lacking in the decision-making process in the city of Dhaka and could greatly help reach informed and structured decisions in the development of adaptation strategies for flood protection.


2021 ◽  
Vol 166 (1-2) ◽  
Author(s):  
Hans Antonson ◽  
Philip Buckland ◽  
Roger Nyqvist

AbstractThis paper provides insights into the handling of climate change issues related to cultural heritage at different government decision levels dealing with physical planning, and in particular roads. Data are derived from a qualitative analysis of official reports and interviews with local and regional planners in three Swedish regions with contrasting climates. The theoretical lens of Institutional Interplay is applied to an analysis grouped into six themes: Climate threats to cultural heritage, Adaptation measures, Preparedness, Institutional preconditions, Institutional interplay, and Challenges. The results suggest that despite a strong environmental reputation internationally, Sweden is not particularly well prepared for dealing with future climate change impacts on cultural heritage and landscape. The lack of national standards and standardised methods risks regional and sectoral variation in the treatment of similar tasks, a problem which deficiencies in knowledge and continuing education are perpetuating. The degree to which discussions and cooperation occur between divisions within the same authority, between authorities, and in national networks varies considerably. Routines and criteria for prioritisation of cultural heritage mitigation, essential under conditions of limited resources, have yet to have been implemented. We conclude with five recommendations for improving the planning process with respect to climate change risks to cultural heritage.


Author(s):  
Mohanasundar Radhakrishnan ◽  
Assela Pathirana ◽  
Richard Ashley ◽  
Chris Zevenbergen

Adaptation to climate change is being addressed in many domains. This means that there are multiple perspectives on adaptation; often with differing visions resulting in disconnected responses and outcomes. Combining singular perspectives into coherent, combined perspectives that include multiple needs and visions can help to deepen the understanding of various aspects of adaptation and provide more effective responses. Such combinations of perspectives can help to increase the range and variety of adaptation measures available for implementation or avoid maladaptation compared with adaptations derived from a singular perspective. The objective of this paper is to present and demonstrate a framework for structuring the local adaptation responses using the inputs from multiple perspectives. The adaptation response framing has been done by: (i) contextualizing climate change adaptation needs; (ii) analyzing drivers of change; (iii) characterizing measures of adaptation; and (iv) establishing links between the measures with a particular emphasis on taking account of multiple perspectives. This framework was demonstrated with reference to the management of flood risks in a case study Can Tho, Vietnam. The results from the case study show that multiple perspective framing of adaptation responses enhance the understanding of various aspects of adaptation measures, thereby leading to flexible implementation practices.  


2021 ◽  
Author(s):  
Hans ANTONSON ◽  
Philip Buckland ◽  
Roger Nyqvist

Abstract This paper provides insights into the handling of climate change issues related to cultural heritage at different government decision levels dealing with physical planning, and in particular roads. Data are derived from a qualitative analysis of official reports and interviews with local and regional planners in three Swedish regions with contrasting climates. The theoretical lens of Institutional Interplay is applied to an analysis grouped into six themes: Climate threats to cultural heritage; Adaptation measures; Preparedness; Institutional preconditions; Institutional interplay, and Challenges. The results suggest that despite a strong environmental reputation internationally, Sweden is not particularly well prepared for dealing with future climate change impacts on cultural heritage and landscape. The lack of national standards and standardized methods risks regional and sectoral variation in the treatment of similar tasks; a problem which deficiencies in knowledge and continuing education are perpetuating. The degree to which discussions and cooperation occurs between divisions within the same authority, between authorities, and in national networks, varies considerably. Routines and criteria for prioritization of cultural heritage mitigation, essential under conditions of limited resources, have yet to have been implemented. We conclude with five recommendations for improving the planning process with respect to climate change risks to cultural heritage.


Water ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1877 ◽  
Author(s):  
Qianqian Zhou ◽  
Karsten Arnbjerg-Nielsen

Identifying what, when, and how much adaptation is needed to account for increased pluvial flood risk is inherently uncertain. This presents a challenge to decision makers when trying to identify robust measures. This paper presents an integrated uncertainty analysis to quantify not only the overall uncertainty of individual adaptation scenarios, but also the net uncertainty between adaptation alternatives for a direct comparison of their efficiency. Further, a sensitivity analysis is used to assess the relative contribution of inherent uncertainties in the assessment. A Danish case study shows that the uncertainties in relation to assessing the present hazards and vulnerabilities (e.g., input runoff volume, threshold for damage, and costing of floods) are important to the overall uncertainty, thus contributing substantially to the overall uncertainty in relation to decisions on action or in-action. Once a decision of action has been taken, the uncertainty of the hazards under the current climate, and also the magnitude of future climate change, are less important than other uncertainties such as discount rate and the cost of implementing the adaptation measures. The proposed methodology is an important tool for achieving an explicit uncertainty description of climate adaptation strategies and provides a guide for further efforts (e.g., field data collection) to improve decision-making in relation to climate change.


Water ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 219 ◽  
Author(s):  
Antonio-Juan Collados-Lara ◽  
David Pulido-Velazquez ◽  
Rosa María Mateos ◽  
Pablo Ezquerro

In this work, we developed a new method to assess the impact of climate change (CC) scenarios on land subsidence related to groundwater level depletion in detrital aquifers. The main goal of this work was to propose a parsimonious approach that could be applied for any case study. We also evaluated the methodology in a case study, the Vega de Granada aquifer (southern Spain). Historical subsidence rates were estimated using remote sensing techniques (differential interferometric synthetic aperture radar, DInSAR). Local CC scenarios were generated by applying a bias correction approach. An equifeasible ensemble of the generated projections from different climatic models was also proposed. A simple water balance approach was applied to assess CC impacts on lumped global drawdowns due to future potential rainfall recharge and pumping. CC impacts were propagated to drawdowns within piezometers by applying the global delta change observed with the lumped assessment. Regression models were employed to estimate the impacts of these drawdowns in terms of land subsidence, as well as to analyze the influence of the fine-grained material in the aquifer. The results showed that a more linear behavior was observed for the cases with lower percentage of fine-grained material. The mean increase of the maximum subsidence rates in the considered wells for the future horizon (2016–2045) and the Representative Concentration Pathway (RCP) scenario 8.5 was 54%. The main advantage of the proposed method is its applicability in cases with limited information. It is also appropriate for the study of wide areas to identify potential hot spots where more exhaustive analyses should be performed. The method will allow sustainable adaptation strategies in vulnerable areas during drought-critical periods to be assessed.


2016 ◽  
Vol 73 (9) ◽  
pp. 2251-2259 ◽  
Author(s):  
J. U. Hasse ◽  
D. E. Weingaertner

As the central product of the BMBF-KLIMZUG-funded Joint Network and Research Project (JNRP) ‘dynaklim – Dynamic adaptation of regional planning and development processes to the effects of climate change in the Emscher-Lippe region (North Rhine Westphalia, Germany)’, the Roadmap 2020 ‘Regional Climate Adaptation’ has been developed by the various regional stakeholders and institutions containing specific regional scenarios, strategies and adaptation measures applicable throughout the region. This paper presents the method, elements and main results of this regional roadmap process by using the example of the thematic sub-roadmap ‘Water Sensitive Urban Design 2020’. With a focus on the process support tool ‘KlimaFLEX’, one of the main adaptation measures of the WSUD 2020 roadmap, typical challenges for integrated climate change adaptation like scattered knowledge, knowledge gaps and divided responsibilities but also potential solutions and promising chances for urban development and urban water management are discussed. With the roadmap and the related tool, the relevant stakeholders of the Emscher-Lippe region have jointly developed important prerequisites to integrate their knowledge, to clarify vulnerabilities, adaptation goals, responsibilities and interests, and to foresightedly coordinate measures, resources, priorities and schedules for an efficient joint urban planning, well-grounded decision-making in times of continued uncertainties and step-by-step implementation of adaptation measures from now on.


Agronomy ◽  
2018 ◽  
Vol 8 (3) ◽  
pp. 25 ◽  
Author(s):  
Tapan Pathak ◽  
Mahesh Maskey ◽  
Jeffery Dahlberg ◽  
Faith Kearns ◽  
Khaled Bali ◽  
...  

California is a global leader in the agricultural sector and produces more than 400 types of commodities. The state produces over a third of the country’s vegetables and two-thirds of its fruits and nuts. Despite being highly productive, current and future climate change poses many challenges to the agricultural sector. This paper provides a summary of the current state of knowledge on historical and future trends in climate and their impacts on California agriculture. We present a synthesis of climate change impacts on California agriculture in the context of: (1) historic trends and projected changes in temperature, precipitation, snowpack, heat waves, drought, and flood events; and (2) consequent impacts on crop yields, chill hours, pests and diseases, and agricultural vulnerability to climate risks. Finally, we highlight important findings and directions for future research and implementation. The detailed review presented in this paper provides sufficient evidence that the climate in California has changed significantly and is expected to continue changing in the future, and justifies the urgency and importance of enhancing the adaptive capacity of agriculture and reducing vulnerability to climate change. Since agriculture in California is very diverse and each crop responds to climate differently, climate adaptation research should be locally focused along with effective stakeholder engagement and systematic outreach efforts for effective adoption and implementation. The expected readership of this paper includes local stakeholders, researchers, state and national agencies, and international communities interested in learning about climate change and California’s agriculture.


Author(s):  
Yvonne Andersson-Sköld ◽  
Lina Nordin ◽  
Erik Nyberg ◽  
Mikael Johannesson

Severe accidents and high costs associated with weather-related events already occur in today’s climate. Unless preventive measures are taken, the costs are expected to increase in future due to ongoing climate change. However, the risk reduction measures are costly as well and may result in unwanted impacts. Therefore, it is important to identify, assess and prioritize which measures are necessary to undertake, as well as where and when these are to be undertaken. To be able to make such evaluations, robust (scientifically based), transparent and systematic assessments and valuations are required. This article describes a framework to assess the cause-and-effect relationships and how to estimate the costs and benefits as a basis to assess and prioritize measures for climate adaptation of roads and railways. The framework includes hazard identification, risk analysis and risk assessment, identification, monetary and non-monetary evaluation of possible risk reduction measures and a step regarding distribution-, goal- and sensitivity analyses. The results from applying the framework shall be used to prioritize among potential risk reduction measures as well as when to undertake them.


Author(s):  
S. Supharatid ◽  
J. Nafung ◽  
T. Aribarg

Abstract Five mainland SEA countries (Cambodia, Laos, Myanmar, Vietnam, and Thailand) are threatened by climate change. Here, the latest 18 Coupled Model Intercomparison Project Phase 6 (CMIP6) is employed to examine future climate change in this region under two SSP-RCP (shared socioeconomic pathway-representative concentration pathway) scenarios (SSP2-4.5 and SSP5-8.5). The bias-corrected multi-model ensemble (MME) projects a warming (wetting) over Cambodia, Laos, Myanmar, Vietnam, and Thailand by 1.88–3.89, 2.04–4.22, 1.88–4.09, 2.03–4.25, and 1.90–3.96 °C (8.76–20.47, 12.69–21.10, 9.54–21.10, 13.47–22.12, and 7.03–15.17%) in the 21st century with larger values found under SSP5-8.5 than SSP2-4.5. The MME model displays approximately triple the current rainfall during the boreal summer. Overall, there are robust increases in rainfall during the Southwest Monsoon (3.41–3.44, 8.44–9.53, and 10.89–17.59%) and the Northeast Monsoon (−2.58 to 0.78, −0.43 to 2.81, and 2.32 to 5.45%). The effectiveness of anticipated climate change mitigation and adaptation strategies under SSP2-4.5 results in slowing down the warming trends and decreasing precipitation trends after 2050. All these findings imply that member countries of mainland SEA need to prepare for appropriate adaptation measures in response to the changing climate.


Sign in / Sign up

Export Citation Format

Share Document