scholarly journals Development of Apatite Nuclei Precipitated Carbon Nanotube-Polyether Ether Ketone Composite with Biological and Electrical Properties

Coatings ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 191
Author(s):  
Chihiro Ishizaki ◽  
Takeshi Yabutsuka ◽  
Shigeomi Takai

We aimed to impart apatite-forming ability to carbon nanotube (CNT)-polyether ether ketone (PEEK) composite (CNT-PEEK). Since CNT possesses electrical conductivity, CNT-PEEK can be expected to useful not only for implant materials but also biosensing devices. First of all, in this study, CNT-PEEK was treated with sulfuric acid to form fine pores on its surface. Then, the hydrophilicity of the substrate was improved by oxygen plasma treatment. After that, the substrate was promptly immersed in simulated body fluid (SBF) which was adjusted at pH 8.40, 25.0 °C (alkaline SBF) and held in an incubator set at 70.0 °C for 1 day to deposit fine particles of amorphous calcium phosphate, which we refer to as ‘apatite nuclei’. When thus-treated CNT-PEEK was immersed in SBF, its surface was spontaneously covered with hydroxyapatite within 1 day by apatite nuclei deposited in the fine pores and high apatite-forming ability was successfully demonstrated. The CNT-PEEK also showed conductivity even after the above treatment and showed smaller impedance than that of the untreated CNT-PEEK substrate.

Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6691
Author(s):  
Yuya Yamane ◽  
Takeshi Yabutsuka ◽  
Yusuke Takaoka ◽  
Chihiro Ishizaki ◽  
Shigeomi Takai ◽  
...  

The authors aimed to impart the apatite-forming ability to 50 wt% carbon fiber-polyetheretherketone composite (50C-PEEK), which has more suitable mechanical properties as artificial bone materials than pure PEEK. First, the 50C-PEEK was treated with sulfuric acid in a short time to form pores on the surface. Second, the surface of the 50C-PEEK was treated with oxygen plasma to improve the hydrophilicity. Finally, fine particles of calcium phosphate, which the authors refer to as “apatite nuclei”, were precipitated on the surface of the 50C-PEEK by soaking in an aqueous solution containing multiple inorganic ions such as phosphate and calcium (modified-SBF) at pH 8.20, 25 °C. The 50C-PEEK without the modified-SBF treatment did not show the formation of apatitic phase even after immersion in simulated body fluid (SBF) for 7 days. The 50C-PEEK treated with the modified-SBF showed the formation of apatitic phase on the entire surface within 1 day in the SBF. The apatite nuclei-precipitated 50C-PEEK will be expected as a new artificial bone material with high bioactivity that is obtained without complicated fabrication processes.


Aerospace ◽  
2020 ◽  
Vol 7 (7) ◽  
pp. 95
Author(s):  
Farhan Abdullah ◽  
Kei-ichi Okuyama ◽  
Akito Morimitsu ◽  
Naofumi Yamagata

The extreme heating environment during re-entry requires an efficient heat shield to protect a spacecraft. The current method of manufacturing a heat shield is labor intensive. The application of 3D printing can reduce cost and manufacturing time and improve the quality of a heat shield. A 3D printed carbon fiber/polyether ether ketone (CF/PEEK) composite was proposed as a heat shield material. The aim was to develop a heat shield and the structural member as a single structure while maintaining the necessary recession resistance. Test samples were exposed to thermal cycles and ultraviolet (UV) radiation environment. Subsequently, a tensile test was performed to evaluate the effect of thermal cycle and UV radiation on the mechanical properties. The sample’s recession performance and temperature behavior were evaluated using an arc heated wind tunnel. Exposure to thermal cycle and UV radiation have limited effect on the mechanical properties, recession behavior and temperature behavior of 3D CF/PEEK. Results from the arc heating test showed an expansion of the sample surface and better recession resistance than other existing ablator materials. Overall, 3D CF/PEEK has excellent recession resistance while maintaining mechanical properties when exposed to high temperature, thermal cycle and UV radiation.


Coatings ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 599 ◽  
Author(s):  
Zhenhua Sun ◽  
Yanfen Zhou ◽  
Wenyue Li ◽  
Shaojuan Chen ◽  
Shihua You ◽  
...  

Direct electroless silver plating of para-aramid (PPTA) is difficult due to its extremely low surface chemical energy. In order to facilitate the deposition of silver nanoparticles and to enhance the washing fastness, oxygen plasma treatment and dopamine modification were conducted before silver plating of PPTA fibers. Various techniques including scanning electron microscopy (SEM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray diffractometer (XRD) and thermogravimetric analyzer (TGA) were used to characterize the surface morphology, chemical composition and thermal stability of the silver-plated PPTA fibers. Electrical resistance and silver content of the silver-coated PPTA fibers before and after standard washing were also studied. The results showed that silver nanoparticles were successfully coated onto the surface of PPTA fibers with and without plasma treatment, but the coating continuity and the electrical conductivity of the silver-coated PPTA fibers were greatly enhanced with the assistance of plasma treatment. It was also demonstrated that the washing fastness of silver-coated PPTA fibers was improved after plasma treatment as indicated by electrical resistance and continuity of the silver nanoparticles after various washing cycles. It was found that the electrical resistance of plasma-treated PPTA-PDA/Ag fibers prepared at an AgNO3 concentration of 20 g/L reached 0.89 Ω/cm and increased slightly to 0.94 Ω/cm after 10 standard washing cycles. The silver-coated PPTA fibers also showed stable electrical conductivity under 250 repeated stretching-releasing cycles at a strain of 3%.


2016 ◽  
Vol 29 (2) ◽  
pp. 205-210 ◽  
Author(s):  
Yu Jin Lin ◽  
Shi Qin ◽  
Bing Han ◽  
Cong Gao ◽  
Shu Ling Zhang

Poly(ether ether ketone)-based (PEEK-based) composites with high electrical conductivity, good mechanical properties, and thermal stability were prepared using multiwall carbon nanotubes (MWCNTs) as a conductive filler and the liquid crystalline copolymer of poly(aryl ether ketone) (FPEDEKKLCP) as a processing aid. The composites were fabricated using melt blending, and the MWCNT/PEEK composites with FPEDEKKLCP exhibited an obvious improvement in the measured electrical conductivity relative to the MWCNT/PEEK composite without FPEDEKKLCP. Moreover, the MWCNT/PEEK composites exhibited good mechanical properties and thermal stability after addition of an appropriate amount of FPEDEKKLCP. This is attributed to the good thermal stability of FPEDEKKLCP, wherein addition of FPEDEKKLCP effectively decreased the melt viscosity of the MWCNT/PEEK composites, accompanied by an improvement in the dispersion of the MWCNTs in the PEEK matrix.


2018 ◽  
Vol 782 ◽  
pp. 182-188 ◽  
Author(s):  
Takeshi Yabutsuka ◽  
Tomoko Hiruta ◽  
Shigeomi Takai ◽  
Takeshi Yao

We aimed to clarify the effect of sulfuric acid treatment and oxygen plasma treatment on changes in surface condition of PEEK substrates during fabrication process of bioactive apatite nuclei (AN) precipitated PEEK. We treated PEEK substrate by sulfuric acid treatment. This treatment contributed to provide micropores and sulfo groups on the surface of the PEEK. Next, we treated the PEEK with oxygen plasma at 200 W for 4 minutes. By this treatment, both generation of carboxyl groups and increase of sulfo groups were occurred and significant improvement of hydrophilicity of the surface of the PEEK was occurred. Finally, we precipitated AN on the surface of the PEEK. By this treatment, high apatite-forming ability was achieved.


Carbon ◽  
2015 ◽  
Vol 81 ◽  
pp. 376-387 ◽  
Author(s):  
Adrianus I. Aria ◽  
Bradley J. Lyon ◽  
Morteza Gharib

Sign in / Sign up

Export Citation Format

Share Document