scholarly journals Surface Modification of Carbon Fiber-Polyetheretherketone Composite to Impart Bioactivity by Using Apatite Nuclei

Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6691
Author(s):  
Yuya Yamane ◽  
Takeshi Yabutsuka ◽  
Yusuke Takaoka ◽  
Chihiro Ishizaki ◽  
Shigeomi Takai ◽  
...  

The authors aimed to impart the apatite-forming ability to 50 wt% carbon fiber-polyetheretherketone composite (50C-PEEK), which has more suitable mechanical properties as artificial bone materials than pure PEEK. First, the 50C-PEEK was treated with sulfuric acid in a short time to form pores on the surface. Second, the surface of the 50C-PEEK was treated with oxygen plasma to improve the hydrophilicity. Finally, fine particles of calcium phosphate, which the authors refer to as “apatite nuclei”, were precipitated on the surface of the 50C-PEEK by soaking in an aqueous solution containing multiple inorganic ions such as phosphate and calcium (modified-SBF) at pH 8.20, 25 °C. The 50C-PEEK without the modified-SBF treatment did not show the formation of apatitic phase even after immersion in simulated body fluid (SBF) for 7 days. The 50C-PEEK treated with the modified-SBF showed the formation of apatitic phase on the entire surface within 1 day in the SBF. The apatite nuclei-precipitated 50C-PEEK will be expected as a new artificial bone material with high bioactivity that is obtained without complicated fabrication processes.

Coatings ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 191
Author(s):  
Chihiro Ishizaki ◽  
Takeshi Yabutsuka ◽  
Shigeomi Takai

We aimed to impart apatite-forming ability to carbon nanotube (CNT)-polyether ether ketone (PEEK) composite (CNT-PEEK). Since CNT possesses electrical conductivity, CNT-PEEK can be expected to useful not only for implant materials but also biosensing devices. First of all, in this study, CNT-PEEK was treated with sulfuric acid to form fine pores on its surface. Then, the hydrophilicity of the substrate was improved by oxygen plasma treatment. After that, the substrate was promptly immersed in simulated body fluid (SBF) which was adjusted at pH 8.40, 25.0 °C (alkaline SBF) and held in an incubator set at 70.0 °C for 1 day to deposit fine particles of amorphous calcium phosphate, which we refer to as ‘apatite nuclei’. When thus-treated CNT-PEEK was immersed in SBF, its surface was spontaneously covered with hydroxyapatite within 1 day by apatite nuclei deposited in the fine pores and high apatite-forming ability was successfully demonstrated. The CNT-PEEK also showed conductivity even after the above treatment and showed smaller impedance than that of the untreated CNT-PEEK substrate.


1992 ◽  
Vol 286 ◽  
Author(s):  
Takeshi Okutani ◽  
Yoshinori Nakata ◽  
Masaakt Suzuki ◽  
Yves Maniette ◽  
Nobuyoshi Goto ◽  
...  

ABSTRACTSiC fine particles were synthesized by the gas-phase thermal decomposition of tetramethylsilane (Si(CH3)4) in hydrogen under microgravity of 10−4G for 10 sec. Rapid heating to the temperature over 800°C which is required for thermal decomposition of Si(CH3)4) under short-time microgravity was attained using a chemical oven where the heat of exothermic reaction of combustion synthesis of Ti-A1-4B composites was used as the heat source. Monodisperse and spherical SiC fine particles were synthesized under microgravity, whereas aggregates of SiC fine particles were synthesized under 1 G gravity. The SiC particles synthesized under microgravity (150-200 nm) were bigger in size and narrower in size distribution than those under 1 G gravity (100-150 nm).


2014 ◽  
Vol 926-930 ◽  
pp. 141-144
Author(s):  
Xu Cui ◽  
Yan Jiao Huang ◽  
Yu Gao ◽  
Shuo Wang

In this paper, low temperature oxygen plasma treatment method was adopted to process the carbon fiber surface. Flexural Strength test method was utilized to represent f composite material flexural strength. This paper observed flexural failure morphology of composite material by aid of SEM, then it compared the mechanical property, hygroscopicitiy and flexural strength retention rate of composite material before and after the plasma treatment. Results showed that the optimum treatment conditions of carbon fiber were 300W treatment power and 15-minute treatment time. Under the condition, the highest flexural strength value be increased by 19.55%.Saturated bibulous is low and bibulous rate is slow, flexural strength retention rate is 94.9%. And at the same time PES-C resin matrix can be strengthened, which will further improve the mechanical properties of composite materials.


Author(s):  
Xing Li ◽  
Shanshan Li ◽  
Qiulin Xiong ◽  
Xingchuan Yang ◽  
Mengxi Qi ◽  
...  

Beijing, which is the capital of China, suffers from severe Fine Particles (PM2.5) pollution during the heating season. In order to take measures to control the PM2.5 pollution and improve the atmospheric environmental quality, daily PM2.5 samples were collected at an urban site from 15 November to 31 December 2016, characteristics of PM2.5 chemical compositions and their effect on atmospheric visibility were analyzed. It was found that the daily average mass concentrations of PM2.5 ranged from 7.64 to 383.00 μg m−3, with an average concentration of 114.17 μg m−3. On average, the Organic Carbon (OC) and Elemental Carbon (EC) contributed 21.39% and 5.21% to PM2.5, respectively. Secondary inorganic ions (SNA: SO42− + NO3− + NH4+) dominated the Water-Soluble Inorganic Ions (WSIIs) and they accounted for 47.09% of PM2.5. The mass concentrations of NH4+, NO3− and SO42− during the highly polluted period were 8.08, 8.88 and 6.85 times greater, respectively, than during the clean period, which contributed most to the serious PM2.5 pollution through the secondary transformation of NO2, SO2 and NH3. During the highly polluted period, NH4NO3 contributed most to the reconstruction extinction coefficient (b′ext), accounting for 35.7%, followed by (NH4)2SO4 (34.44%) and Organic Matter (OM: 15.24%). The acidity of PM2.5 in Beijing was weakly acid. Acidity of PM2.5 and relatively high humidity could aggravate PM2.5 pollution and visibility impairment by promoting the generation of secondary aerosol. Local motor vehicles contributed the most to NO3−, OC, and visibility impairment in urban Beijing. Other sources of pollution in the area surrounding urban Beijing, including coal burning, agricultural sources, and industrial sources in the Hebei, Shandong, and Henan provinces, released large amounts of SO2, NH3, and NO2. These, which were transformed into SO42−, NH4+, and NO3− during the transmission process, respectively, and had a great impact on atmospheric visibility impairment.


2008 ◽  
Vol 42 (10) ◽  
pp. 793-800 ◽  
Author(s):  
Bangwoo Han ◽  
Hak-Joon Kim ◽  
Yong-Jin Kim ◽  
Constantinos Sioutas

2011 ◽  
Vol 332-334 ◽  
pp. 1951-1954 ◽  
Author(s):  
Jia Horng Lin ◽  
Wen Cheng Chen ◽  
Jin Jia Hu ◽  
Yueh Sheng Chen ◽  
Shih Peng Wen ◽  
...  

Biodegradable polymer has been widely used in surgical suture, dressing, artificial bone and other bone-related applications. Studies have demonstrated that metals, such as titanium, titanium alloys or 316L stainless steel, can be widely used in dental and maxillofacial surgeries. The present study aimed to fabricate a scaffold with a blend of multilayer polylactic acid (PLA) ply yarns with 316L stainless steel (SS) braids, which was then immersed in simulated body fluid (SBF), forming the PLA/SS composite braid with hydroxylapatite deposition. After being immersed in SBF for 14 days, the PLA/SS composite braid was covered with precipitate which was confirmed to be apatite deposition according to surface observation and EDS evaluation.


2014 ◽  
Vol 631 ◽  
pp. 326-331 ◽  
Author(s):  
Takeshi Yabutsuka ◽  
Kazuma Iwahashi ◽  
Hiroki Nakamura ◽  
Takeshi Yao

When either the pH or temperature of simulated body fluid (SBF) are raised, fine particles of calcium phosphate are precipitated. We found that these fine particles actively induce hydroxyapatite formation from body fluid or SBF and named the particles Apatite Nuclei. In this study, we fabricated hollow hydroxyapatite microcapsules by using Apatite Nuclei. We inserted vitamin B12 in the hollow microcapsule and examined thesustained-release properties.


Sign in / Sign up

Export Citation Format

Share Document