scholarly journals Research Progress of High Dielectric Constant Zirconia-Based Materials for Gate Dielectric Application

Coatings ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 698
Author(s):  
Junan Xie ◽  
Zhennan Zhu ◽  
Hong Tao ◽  
Shangxiong Zhou ◽  
Zhihao Liang ◽  
...  

The high dielectric constant ZrO2, as one of the most promising gate dielectric materials for next generation semiconductor device, is expected to be introduced as a new high k dielectric layer to replace the traditional SiO2 gate dielectric. The electrical properties of ZrO2 films prepared by various deposition methods and the main methods to improve their electrical properties are introduced, including doping of nonmetal elements, metal doping design of pseudo-binary alloy system, new stacking structure, coupling with organic materials and utilization of crystalline ZrO2 as well as optimization of low-temperature solution process. The applications of ZrO2 and its composite thin film materials in metal oxide semiconductor field effect transistor (MOSFET) and thin film transistors (TFTs) with low power consumption and high performance are prospected.

A novel high-k gate dielectric material, i.e., Lanthanum-doped Zirconium oxide (La-doped ZrO2 ), has been thoroughly studied for applications in future metal oxide semiconductor field-effect transistor (MOSFET). The film's structural, chemical and electrical properties are investigated experimentally. The incorporation of La into ZrO2 impacted the electrical properties in terms of leakage current while not sacrificing its dielectric constant. The dielectric constant of 25 is achieved which is calculated from the C-V analysis taken from Agilent 1500A Semiconductor Device Analyzer. XRD, FTIR, EDX analysis were conducted to confirm the stoichiometry and bond formation of La2Zr2O7 . The sol-gel spin coating method is adopted to form a uniform thin film over p-Silicon substrate and Aluminium is evaporated in the eBeam technique as gate electrode to form an MIS capacitor. The La-doped ZrO2 film is hence a potential high-k gate dielectric for future application in MIS thin film transistors.


2013 ◽  
Vol 22 ◽  
pp. 564-569
Author(s):  
KANTA RATHEE ◽  
B. P. MALIK

Down scaling of complementary metal oxide semiconductor transistors has put limitations on silicon dioxide to be used as an effective dielectric. It is necessary to replace the SiO 2 with a physically thicker layer of oxides of high dielectric constant. Thus high k dielectrics are used to suppress the existing challenges for CMOS scaling. Many new oxides are being evaluated as gate dielectrics such as Ta2O5 , HfO2 , ZrO2 , La2O3 , HfO2 , TiO2 , Al2O3 , Y2O3 etc but it was soon found that these oxides in many respects have inferior electronic properties to SiO2 . But the the choice alone of suitable metal oxide with high dielectric constant is not sufficient to overcome the scaling challenges. The various deposition techniques and the conditions under which the thin films are deposited plays important role in deciding the structural and electrical properties of the deposited films. This paper discusses in brief the various deposition conditions which are employed to improve the structural and electrical properties of the deposited films.


2012 ◽  
Vol 1467 ◽  
Author(s):  
James G. Grote ◽  
Fahima Ouchen ◽  
Donna M. Joyce ◽  
Kristi M. Singh ◽  
Narayanan Venkat ◽  
...  

ABSTRACTThe potential of bio-dielectrics for thin film transistor applications was explored via the incorporation of titanium dioxide (TiO2) nanoparticles, rutile form, a high dielectric constant (ε) ceramic, in the deoxyribonucleic acid (DNA) bio-polymer. The DNA-ceramic hybrid films were fabricated from stable suspensions of the TiO2 nanoparticles in viscous, aqueous DNA solutions. Dielectric characterization revealed that the incorporation of TiO2 in DNA resulted in enhanced dielectric constant (14.3 at 1 kHz for 40 wt % TiO2) relative to that of DNA in the entire frequency range of 1 kHz-1 MHz. Variable temperature dielectric measurements, in the 20-80°C range, of the DNA-TiO2 films revealed that the ceramic additive stabilizes DNA against large temperature dependent variations in both ε and the dielectric loss factor tan δ. The bulk resistivity of the DNA-TiO2 hybrid films was measured to be two to three orders of magnitude higher than that of the control DNA films, indicating their potential for utilization as insulating dielectrics in transistor and capacitor applications.


2006 ◽  
Vol 966 ◽  
Author(s):  
C.Y. Liu ◽  
Tseung-Yuen Tseng

ABSTRACTAmong various possible candidates of high-k gate dielectrics, SrTiO3 plays an important role because it has high dielectric constant and it can be epitaxially grown on silicon substrate. The fabrication process and properties of SrTiO3 gate dielectrics are reported. The effect of the addition of SiO2 on the microstructure and electrical properties of SrTiO3 gate dielectric is also presented. The minimization of the effect of interfacial layer between SrTiO3 and Si is the most important issue for obtaining high quality high-k gate dielectrics. The possible methods to improve the interfacial properties and the measurement techniques to characterize the interfacial layer are discussed.


2018 ◽  
Vol 42 (13) ◽  
pp. 10969-10975
Author(s):  
Xuesong Wang ◽  
He Wang ◽  
Yao Li ◽  
Ting Xu ◽  
Wei Wang ◽  
...  

A polyurethane material with a high dielectric constant was used to regulate the grain size of p-6P.


2019 ◽  
Vol 5 (5) ◽  
pp. eaau9785 ◽  
Author(s):  
Sandhya Susarla ◽  
Thierry Tsafack ◽  
Peter Samora Owuor ◽  
Anand B. Puthirath ◽  
Jordan A. Hachtel ◽  
...  

Upcoming advancements in flexible technology require mechanically compliant dielectric materials. Current dielectrics have either high dielectric constant, K (e.g., metal oxides) or good flexibility (e.g., polymers). Here, we achieve a golden mean of these properties and obtain a lightweight, viscoelastic, high-K dielectric material by combining two nonpolar, brittle constituents, namely, sulfur (S) and selenium (Se). This S-Se alloy retains polymer-like mechanical flexibility along with a dielectric strength (40 kV/mm) and a high dielectric constant (K = 74 at 1 MHz) similar to those of established metal oxides. Our theoretical model suggests that the principal reason is the strong dipole moment generated due to the unique structural orientation between S and Se atoms. The S-Se alloys can bridge the chasm between mechanically soft and high-K dielectric materials toward several flexible device applications.


2003 ◽  
Vol 42 (Part 1, No. 1) ◽  
pp. 299-304 ◽  
Author(s):  
Yoshiki Iino ◽  
Youji Inoue ◽  
Yoshihide Fujisaki ◽  
Hideo Fujikake ◽  
Hiroto Sato ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document