scholarly journals Fabrication and Characterization of amorphous Lanthanum Zirconate Gate Capacitors

A novel high-k gate dielectric material, i.e., Lanthanum-doped Zirconium oxide (La-doped ZrO2 ), has been thoroughly studied for applications in future metal oxide semiconductor field-effect transistor (MOSFET). The film's structural, chemical and electrical properties are investigated experimentally. The incorporation of La into ZrO2 impacted the electrical properties in terms of leakage current while not sacrificing its dielectric constant. The dielectric constant of 25 is achieved which is calculated from the C-V analysis taken from Agilent 1500A Semiconductor Device Analyzer. XRD, FTIR, EDX analysis were conducted to confirm the stoichiometry and bond formation of La2Zr2O7 . The sol-gel spin coating method is adopted to form a uniform thin film over p-Silicon substrate and Aluminium is evaporated in the eBeam technique as gate electrode to form an MIS capacitor. The La-doped ZrO2 film is hence a potential high-k gate dielectric for future application in MIS thin film transistors.

Coatings ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 698
Author(s):  
Junan Xie ◽  
Zhennan Zhu ◽  
Hong Tao ◽  
Shangxiong Zhou ◽  
Zhihao Liang ◽  
...  

The high dielectric constant ZrO2, as one of the most promising gate dielectric materials for next generation semiconductor device, is expected to be introduced as a new high k dielectric layer to replace the traditional SiO2 gate dielectric. The electrical properties of ZrO2 films prepared by various deposition methods and the main methods to improve their electrical properties are introduced, including doping of nonmetal elements, metal doping design of pseudo-binary alloy system, new stacking structure, coupling with organic materials and utilization of crystalline ZrO2 as well as optimization of low-temperature solution process. The applications of ZrO2 and its composite thin film materials in metal oxide semiconductor field effect transistor (MOSFET) and thin film transistors (TFTs) with low power consumption and high performance are prospected.


2003 ◽  
Vol 39 (21) ◽  
pp. 1499 ◽  
Author(s):  
C.W. Yang ◽  
Y.K. Fang ◽  
C.S. Lin ◽  
Y.S. Tsair ◽  
S.M. Chen ◽  
...  

2019 ◽  
Vol 35 (3) ◽  
pp. 325-332 ◽  
Author(s):  
T. Das ◽  
Chandreswar Mahata ◽  
G Sutradhar ◽  
P K Bose ◽  
C.K. Maiti

Sign in / Sign up

Export Citation Format

Share Document