scholarly journals Robustness of Surface Roughness against Low Number of Picture Elements and Its Benefit for Scaling Analysis

Coatings ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 776
Author(s):  
Wenmeng Zhou ◽  
Xinghui Li ◽  
Feng Feng ◽  
Timing Qu ◽  
Junlong Huang ◽  
...  

Surface roughness is widely used in the research of topography, and the scaling characteristics of roughness have been noticed in many fields. To rapidly obtain the relationship between root-mean-squared roughness (Rq) and measurement scale (L) could be helpful to achieve more understandings of the surface property, particularly the Rq-L curve could be fitted to calculate the fractal dimension (D). In this study, the robustness of Rq against low number of picture elements was investigated. Artificial surfaces and the surfaces of two actual samples (a silver thin film and a milled workpiece) were selected. When the number of picture elements was lowered, Rq was found to be stable within a large portion of the concerned scope. Such a robustness property could validate the feasibility of Rq-L curve obtained by segmenting a single morphological picture with roughness scaling extraction (RSE) method, which was proposed in our previous study. Since the traditional roughness (TR) method to obtain Rq-L curves was based on multiple pictures, which used a fixed number of picture elements at various L, RSE method could be significantly more rapid than TR method. Moreover, a direct comparison was carried out between RSE method and TR method in calculating the Rq-L curve and D, and the credibility and accuracy of RSE method with flatten order 1 and 2 was verified.

2005 ◽  
Vol 291-292 ◽  
pp. 475-482 ◽  
Author(s):  
Koichi Okuda ◽  
Masayuki Nunobiki

This study aims at clarifying the relationship between the surface integrity of PTFE finished by an ultra-precision diamond cutting and the adhesion strength of a metal thin film. As the first step of this study, the basic properties such as surface integrity in the diamond cutting of PTFE and the effect of the surface roughness on the textile water repellency are demonstrated in this report. The following remarks were found. The measured roughness of finished surface largely exceeded the theoretical roughness, while the cutting force was very small comparing with aluminum and the flow type chips were formed. The surface with a smaller roughness tended to repel water.


2013 ◽  
Vol 4 (1) ◽  
pp. 63-68 ◽  
Author(s):  
Zs. Kun ◽  
I. G. Gyurika

Abstract The stone products with different sizes, geometries and materials — like machine tool's bench, measuring machine's board or sculptures, floor tiles — can be produced automatically while the manufacturing engineer uses objective function similar to metal cutting. This function can minimise the manufacturing time or the manufacturing cost, in other cases it can maximise of the tool's life. To use several functions, manufacturing engineers need an overall theoretical background knowledge, which can give useful information about the choosing of technological parameters (e.g. feed rate, depth of cut, or cutting speed), the choosing of applicable tools or especially the choosing of the optimum motion path. A similarly important customer's requirement is the appropriate surface roughness of the machined (cut, sawn or milled) stone product. This paper's first part is about a five-month-long literature review, which summarizes in short the studies (researches and results) considered the most important by the authors. These works are about the investigation of the surface roughness of stone products in stone machining. In the second part of this paper the authors try to determine research possibilities and trends, which can help to specify the relation between the surface roughness and technological parameters. Most of the suggestions of this paper are about stone milling, which is the least investigated machining method in the world.


2019 ◽  
Vol 7 (36) ◽  
pp. 20733-20741 ◽  
Author(s):  
Mehri Ghasemi ◽  
Miaoqiang Lyu ◽  
Md Roknuzzaman ◽  
Jung-Ho Yun ◽  
Mengmeng Hao ◽  
...  

The phenethylammonium cation significantly promotes the formation of fully-covered thin-films of hybrid bismuth organohalides with low surface roughness and excellent stability.


2021 ◽  
Vol 13 (11) ◽  
pp. 2210
Author(s):  
Zohreh Alijani ◽  
John Lindsay ◽  
Melanie Chabot ◽  
Tracy Rowlandson ◽  
Aaron Berg

Surface roughness is an important factor in many soil moisture retrieval models. Therefore, any mischaracterization of surface roughness parameters (root mean square height, RMSH, and correlation length, ʅ) may result in unreliable predictions and soil moisture estimations. In many environments, but particularly in agricultural settings, surface roughness parameters may show different behaviours with respect to the orientation or azimuth. Consequently, the relationship between SAR polarimetric variables and surface roughness parameters may vary depending on measurement orientation. Generally, roughness obtained for many SAR-based studies is estimated using pin profilers that may, or may not, be collected with careful attention to orientation to the satellite look angle. In this study, we characterized surface roughness parameters in multi-azimuth mode using a terrestrial laser scanner (TLS). We characterized the surface roughness parameters in different orientations and then examined the sensitivity between polarimetric variables and surface roughness parameters; further, we compared these results to roughness profiles obtained using traditional pin profilers. The results showed that the polarimetric variables were more sensitive to the surface roughness parameters at higher incidence angles (θ). Moreover, when surface roughness measurements were conducted at the look angle of RADARSAT-2, more significant correlations were observed between polarimetric variables and surface roughness parameters. Our results also indicated that TLS can represent more reliable results than pin profiler in the measurement of the surface roughness parameters.


2014 ◽  
Vol 902 ◽  
pp. 95-100 ◽  
Author(s):  
Heraldo J. Amorim ◽  
Augusto O. Kunrath Neto

The aim of this work is to analyze the tool wear effects on surface finish of machined components. Long-term machinability tests were performed for ASTM 1040 and 1045 carbon steels with carbide tools, in which tool wear and surface roughness were periodically evaluated. Surface finish was analyzed as a function of processed material and cutting speed with new machining tool, and a significant influence was found for cutting speed at a confidence interval of 10%. When evaluated as a function of time and tool wear, surface roughness showed an exponential relationship with both variables. However, a high dispersion occurs close to the end of tool life, especially for AISI 1040 steel. Weak influence of cutting speed (for the range of speeds tested) was observed on the relationship between tool wear and surface finish, indicating that a single equation can describe its behavior for all studied conditions. The relationship between the surface roughness and the cutting time was found to be stronger for the ABNT 1040 steel.


Sign in / Sign up

Export Citation Format

Share Document