scholarly journals Composition, Structure and Mechanical Properties of Industrially Sputtered Ta–B–C Coatings

Coatings ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 853
Author(s):  
Michael Kroker ◽  
Pavel Souček ◽  
Pavol Matej ◽  
Lukáš Zábranský ◽  
Zsolt Czigány ◽  
...  

Ta–B–C coatings were non-reactively sputter-deposited in an industrial batch coater from a single segmented rotating cylindrical cathode employing a combinatorial approach. The chemical composition, morphology, microstructure, mechanical properties, and fracture resistance of the coatings were investigated. Their mechanical properties were linked to their microstructure and phase composition. Coatings placed stationary in front of the racetrack of the target and those performing a 1-axis rotation around the substrate carousel are compared. Utilization of the substrate rotation has no significant effect on the chemical composition of the coatings deposited at the same position compared to the cathode. Whereas the morphology of coatings with corresponding chemical composition is similar for stationary as well as rotating samples, the rotating coatings exhibit a distinct multilayered structure with a repetition period in the range of nanometers despite utilizing a non-reactive process and a single sputter source. All the coatings are either amorphous, nanocomposite or nanocrystalline depending on their chemical composition. The presence of TaC, TaB, and/or TaB2 phases is identified. The crystallite size is typically less than 5 nm. The highest hardness of the coatings is associated with the presence of larger grains in a nanocomposite structure or formation of polycrystalline coatings. The number, density, and length of cracks observed after high-load indentation is on par with current optimized commercially available protective coatings.

2021 ◽  
Vol 316 ◽  
pp. 1019-1024
Author(s):  
O. A. Ignatova ◽  
A. A. Dyatchina

The paper presents the studies’ results of chemical composition, structure, and physico-mechanical properties of high-calcium ashes from the Kansk-Achinsk coals (2017-2019 selection). It was found that ash has a complex poly-mineral composition and contains hydraulically active minerals and oxides of СаОfr, β-C2S, CA, C3A, C4AF, C2F, CaSO4. According to the content of CaOfr, MgO does not meet standards’ requirements. The uniformity of the volume change is maintained by the composition with 50% of cement. The structure and hardening kinetics of ash and ash-cement stone compositions, obtained from the test of normal density, were analyzed. It was established that the hardening of compositions with ash from the Kansk-Achinsk coals was largely influenced by ash minerals. An equivalent amount of cement in composite binders cannot be replaced. In order to obtain a positive effect, compositions with ash instead cement of no more than 30% and a part of fine aggregate, without exceeding the ratio of ash: cement = 1: 1, should be used.


2020 ◽  
Vol 989 ◽  
pp. 283-289
Author(s):  
Yu.B. Egorova ◽  
L.V. Davydenko ◽  
I.M. Mamonov

This paper presents the results of statistical tests, carried out to identify the mechanical properties of Ø 16-150 mm VT6 titanium alloy bars, as a function of their post-annealing chemical composition and structure. It is shown that the high variation of mechanical properties may be, due to fluctuations in the grade composition and structure type. 50% to 60% of variations in strength properties are due to composition + structure co-effects. To improve the stability of such properties, the paper identifies maximum permissible total fluctuations in the chemical composition in terms of aluminum/molybdenum equivalents of alloying elements and impurities. The research team has fitted the regression dependencies for evaluating the mean values of the mechanical properties of Ø 16-60 mm VT6 bars, as a function of the structure type and aluminum/molybdenum equivalents of the alloying elements and impurities.


2019 ◽  
Vol 6 (5) ◽  
pp. 806-832 ◽  
Author(s):  
Sergey I. Gutnikov ◽  
◽  
Evgeniya S. Zhukovskaya ◽  
Sergey S. Popov ◽  
Bogdan I. Lazoryak

Author(s):  
O. G. Ospennikova ◽  
P. G. Min ◽  
A. M. Rogalev ◽  
V. E. Vadeev

The paper studies chemical composition, structure and mechanical properties of the heat-resistant nickel EP648 alloy obtained by deformation, die project casting and selective laser melting. It is shown that the deformed material is characterized by low porosity, high impact strength and ductility, the cast material has large grains, high long-term strength and low-cycle fatigue. The material obtained by selective laser melting is characterized by an increased content of oxygen and nitrogen, fine-grain structure with large variation in grain size strongly expressed and heredity, and also high short-term strength.


Sign in / Sign up

Export Citation Format

Share Document