scholarly journals Analysis of Different Complex Multilayer PACVD Coatings on Nanostructured WC-Co Cemented Carbide

Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 823
Author(s):  
Danko Ćorić ◽  
Mateja Šnajdar Musa ◽  
Matija Sakoman ◽  
Željko Alar

The development of cemented carbides nowadays is aimed at the application and sintering of ultrafine and nano-sized powders for the production of a variety of components where excellent mechanical properties and high wear resistance are required for use in high temperature and corrosive environment conditions. The most efficient way of increasing the tribological properties along with achieving high corrosion resistance is coating. Using surface processes (modification and/or coating), it is possible to form a surface layer/base material system with properties that can meet modern expectations with acceptable production costs. Three coating systems were developed on WC cemented carbides substrate with the addition of 10 wt.% Co using the plasma-assisted chemical vapor deposition (PACVD) method: single-layer TiN coating, harder multilayer gradient TiCN coating composed of TiN and TiCN layers, and the hardest multilayer TiBN coating composed of TiN and TiB2. Physical and mechanical properties of coated and uncoated samples were investigated by means of quantitative depth profile (QDP) analysis, nanoindentation, surface layer characterization (XRD analysis), and coating adhesion evaluation using the scratch test. The results confirm the possibility of obtaining nanostructured cemented carbides of homogeneous structure without structural defects such as eta phase or unbound carbon providing increase in hardness and fracture toughness. The lowest adhesion was detected for the single-layer TiN coating, while coatings with a complex architecture (TiCN, TiBN) showed improved adhesion.

2019 ◽  
Vol 18 ◽  
pp. 100247 ◽  
Author(s):  
Avik Mahata ◽  
Jin-Wu Jiang ◽  
D. Roy Mahapatra ◽  
Timon Rabczuk

Author(s):  
Elizaveta Yu. Kudryashova ◽  
Ivan A. Shamberov ◽  
Roman N. Zadoroznyy

The creation of a universal, economical and high-tech way of increasing the life of both worn and new parts has become an urgent task. Such methods include nanostructuring of surface coatings, which can be performed by electric spark alloying. (Research purpose) The research purpose is studying the possibilities of electric spark alloying in the nanostructuring of the surface layer of carbon steels. (Materials and methods) The authors conducted study of the surface layer of 35-carbon steel with coatings obtained by electric spark alloying on the BIG-1 installation with different materials (Cu, Zn, W and WC) and at different modes. To study the surface layer, the elemental content was studied by x-ray fluorescence spectroscopy, the surface profile was studied by profiling, metallographic studies and microhardness measurements. (Results and discussion) The authors revealed that the chemical composition of the alloying electrode and treatment modes have a direct impact on the saturation of the surface layer with alloying elements, the parameters of the profile of the treated surface, the continuity and mechanical properties of the coating. It was found that harder processing modes increase productivity, but reduce mechanical properties. It was also found that the modified structure of the base material contains nanostructured elements because of electroscopic alloying. A sharp increase in the mechanical properties of the coating material allows suggesting that elements of the nanostructural range are present in the coating. (Conclusion) The conducted research shows that the method of electroscopic alloying can be used for nanostructuring of the surface layer of carbon steels.


2020 ◽  
Author(s):  
◽  
Sergejs Ločs

The present dissertation “Laser Cladded Surface Hardening Coating with Gradient of Mechanical Properties” is devoted to the research of laser cladding process for obtaining high quality surface hardening coating, which can be used for hardening and refurbishment of both machine elements and pressure processing technological equipment. The aim of the research was to investigate the possibility of creating a laser cladded single layer surface hardening coating with a gradient of mechanical properties in the normal direction from the surface to the base material, which would allow increasing the crack resistance of the cladded coating and consequently extend the workability of product in manufacturing and refurbishment of machine elements and tools. The present dissertation contains an introduction, a literature analysis part, a description of research methods, a description of technical facilities and materials, and experimental-analytical parts. Chapter 1 covers literature analysis of laser cladding technologies and concepts for the development of advanced coatings with gradient of properties. The current situation in laser cladding of surface hardening and wear resistant coatings is analysed, including information on the parameters of the laser cladding process, as well as current information on achievable coating properties, coating quality characteristics and typical defects. Chapter 2 provides information on the research methodology, equipment, methods and materials. In this paper, metallography of laser cladded beads and coatings was investigated in detail, as well as the morphology, chemical composition, and mechanical and tribo-technical properties of coatings. Chapter 3 describes the experimental research on forming conditions of the laser cladded high-speed steel (AISI M2) single beads with a keyhole in penetration quality characteristics (shape geometry, porosity and amount of carbide-forming elements) in respect to the technological parameters (cladding speed and laser beam defocusing) of the process. In chapter 4 the experimental research of the influence of laser cladding process regimes on the quality characteristics (thickness, depth of penetration, amount of carbide forming elements in the facing layer), morphology and change in mechanical properties (microhardness) in coating-substrate system of high-speed steel (AISI M2) coatings with keyhole in penetration is reviewed. In chapter 5 experimental study of laser cladding process parameters (overlap ratio, cladding speed and laser beam defocusing direction) and anisotropic structure influence on surface properties (hardness and friction coefficient) of high-speed steel coatings after mechanical treatment is described. Chapter 6 describes the experimental study, in which comparative analysis of differently laser cladded high-speed steel coatings using conventional and the new laser cladding method is carried out. As a result of the research, regime frames of the new laser cladding method for deposition of a single bead and a coating with keyhole penetration in to substrate were determined. The results are summarized in figures, tables and graphs. On the basis of regression analysis empirical models of laser cladding process are obtained, which can be used to predict the values of the cladded bead and coating quality characteristics. In the dissertation a new laser cladding method was developed (Latvian patent application P–19–84, date of filing 30.12.2019.), which allows to create single-layer surface hardening coatings with improved properties in the coating and base material transition zone, which may have a positive influence on the residual stress redistribution, especially when using materials with different coefficients of thermal expansion. Thus, this method eliminates the need for interlayer application in the cladding of dissimilar steels. Consequently, it can contribute to increasing the fatigue resistance of items as well as to increasing the durability under thermocyclic conditions. Technological instruction for hardening and refurbishment of surfaces of pressure shaping equipment by laser cladding of coatings with keyhole in penetration was elaborated as the basis for the present dissertation. At the end of the dissertation information about the trial production of the refurbished parts with coatings obtained by new laser cladding method in Latvia and Belarus; and approbation of the results, as well as an insight regarding the development prospects of this method in further research is given.


Author(s):  
V. N. Filimonenko ◽  
M. H. Richman ◽  
J. Gurland

The high temperatures and pressures that are found in a spark gap during electrical discharging lead to a sharp phase transition and structural transformation in the surface layer of cemented carbides containing WC and cobalt. By means of X-ray diffraction both W2C and a high-temperature monocarbide of tungsten (face-centered cubic) were detected after electro-erosion. The W2C forms as a result of the peritectic reaction, WC → W2C+C. The existence and amount of the phases depend on both the energy of the electro-spark discharge and the cobalt content. In the case of a low-energy discharge (i.e. C=0.01μF, V = 300v), WC(f.c.c.) is generally formed in the surface layer. However, at high energies, (e.g. C=30μF, V = 300v), W2C is formed at the surface in preference to the monocarbide. The phase transformations in the surface layer are retarded by the presence of larger percentages of cobalt.Metallographic examination of the electro-eroded surfaces of cemented carbides was carried out on samples with 5-30% cobalt content. The specimens were first metallographically polished using diamond paste and standard procedures and then subjected to various electrical discharges on a Servomet spark machining device. The samples were then repolished and etched in a 3% NH4OH electrolyte at -0.5 amp/cm2. Two stage plastic-carbon replicas were then made and shadowed with chromium at 27°.


TAPPI Journal ◽  
2019 ◽  
Vol 18 (2) ◽  
pp. 93-99
Author(s):  
SEYYED MOHAMMAD HASHEMI NAJAFI ◽  
DOUGLAS BOUSFIELD, ◽  
MEHDI TAJVIDI

Cracking at the fold of publication and packaging paper grades is a serious problem that can lead to rejection of product. Recent work has revealed some basic mechanisms and the influence of various parameters on the extent of crack area, but no studies are reported using coating layers with known mechanical properties, especially for double-coated systems. In this study, coating layers with different and known mechanical properties were used to characterize crack formation during folding. The coating formulations were applied on two different basis weight papers, and the coated papers were folded. The binder systems in these formulations were different combinations of a styrene-butadiene latex and mixtures of latex and starch for two different pigment volume concentrations (PVC). Both types of papers were coated with single and double layers. The folded area was scanned with a high-resolution scanner while the samples were kept at their folded angle. The scanned images were analyzed within a constant area. The crack areas were reported for different types of papers, binder system and PVC values. As PVC, starch content, and paper basis weight increased, the crack area increased. Double layer coated papers with high PVC and high starch content at the top layer had more cracks in comparison with a single layer coated paper, but when the PVC of the top layer was low, cracking area decreased. No measurable cracking was observed when the top layer was formulated with a 100% latex layer.


2012 ◽  
Vol 717-720 ◽  
pp. 415-418
Author(s):  
Yoshitaka Umeno ◽  
Kuniaki Yagi ◽  
Hiroyuki Nagasawa

We carry out ab initio density functional theory calculations to investigate the fundamental mechanical properties of stacking faults in 3C-SiC, including the effect of stress and doping atoms (substitution of C by N or Si). Stress induced by stacking fault (SF) formation is quantitatively evaluated. Extrinsic SFs containing double and triple SiC layers are found to be slightly more stable than the single-layer extrinsic SF, supporting experimental observation. Effect of tensile or compressive stress on SF energies is found to be marginal. Neglecting the effect of local strain induced by doping, N doping around an SF obviously increase the SF formation energy, while SFs seem to be easily formed in Si-rich SiC.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 126
Author(s):  
Viktoria Hoppe ◽  
Patrycja Szymczyk-Ziółkowska ◽  
Małgorzata Rusińska ◽  
Bogdan Dybała ◽  
Dominik Poradowski ◽  
...  

The purpose of this work is to obtain comprehensive reference data of the Ti-13Nb-13Zr alloy base material: its microstructure, mechanical, and physicochemical properties. In order to obtain extensive information on the tested materials, a number of examination methods were used, including SEM, XRD, and XPS to determine the phases occurring in the material, while mechanical properties were verified with static tensile, compression, and bending tests. Moreover, the alloy’s corrosion resistance in Ringer’s solution and the cytotoxicity were investigated using the MTT test. Studies have shown that this alloy has the structure α’, α, and β phases, indicating that parts of the β phase transformed to α’, which was confirmed by mechanical properties and the shape of fractures. Due to the good mechanical properties (E = 84.1 GPa), high corrosion resistance, as well as the lack of cytotoxicity on MC3T3 and NHDF cells, this alloy meets the requirements for medical implant materials. Ti-13Nb-13Zr alloy can be successfully used in implants, including bone tissue engineering products and dental applications.


Sign in / Sign up

Export Citation Format

Share Document