scholarly journals Numerical Simulation and Parameter Analysis of Electromagnetic Riveting Process for Ti-6Al-4V Titanium Rivet

Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 878
Author(s):  
Yangfan Qin ◽  
Yuxuan Liao ◽  
Guangyao Li ◽  
Junjia Cui ◽  
Hao Jiang

Electromagnetic riveting process (EMR) is a high-speed impact connection technology with the advantages of fast loading speed, large impact force and stable rivet deformation. In this work, the axisymmetric sequential and loose electromagnetic-structural coupling simulation models were conducted to perform the electromagnetic riveting process of a Ti-6Al-4V titanium rivet, and the parameter analysis of the riveting setup was performed based on the sequential coupled simulation results. In addition, the single-objective optimization problem of punch displacement was conducted using the Hooke–Jeeves algorithm. Based on the adaptive remeshing technology adopted in air meshes, the deformation calculated in the structural field was well transferred to the electromagnetic field in the sequential coupled model. Thus, the sequential coupling simulation results presented higher accuracy on the punch speed and rivet deformation than the loose coupling numerical model. The maximum relative difference of electromagnetic force (EMF) on driver plate and radial displacement in the rivet shaft was 34.86% and 13.43%, respectively. The parameter analysis results showed that the outer diameter and the height of the driver plate had a significant first-order effect on the response of displacement, while the platform height, transition zone height, angle, and transition zone width of the amplifier presented a strong interaction effect. Using the obtained results on the optimal structural parameters, the punch speed was effectively improved from 6.13 to 8.12 m/s with a 32.46% increase. Furthermore, the displacement of the punch increasing from 3.38 to 3.81 mm would lead to an 80.55% increase in the maximum radial displacement of the rivet shaft. This indicated that the deformation of the rivet was efficiently improved by using the optimal rivet model.

2011 ◽  
Vol 211-212 ◽  
pp. 384-388
Author(s):  
Gui Mei Guo ◽  
Lin Hong

Sight-stabilizing mechanisms controlled by diaphragm springs and other damping elements is an important subordinate system of airborne sight stabilizing System. The performances of sight-stabilizing system depend on the characteristics of kinematics and dynamics of the system in a great extent. Among various external moments acting on the rod of the manipulator, such as those moments caused by damper, positioning spring, and restoration spring, the forces by diaphragm springs are most obvious. According to the structure form and motion peculiarity, the rod can be equivalent to a rigid body turning around a fix point. Simulation results reveal that the moment of the restoration spring to the rod is proportional to the angular displacement, and that the moment is the most prominent factor influencing the operating performances among all these moments. Through reasonable adjustments of structural parameters of the restoration spring, the performances of the sight-stabilizing system can be improved greatly; the analysis method provides a basis for guiding the design of concerned structural parameters of sight-stabilizing system.


2015 ◽  
Vol 651-653 ◽  
pp. 1439-1444 ◽  
Author(s):  
Wei Jia Li ◽  
Lian Fa Yang

Upsetting and extruding riveting is a new joining method, which is mainly used to join castings. In order to investigate the effect of geometric dimensions of punch and upper sheet hole diameter on the quality of joints, models with different geometric parameters were simulated via ABAQUS. According to the simulation results, the riveting process could be divided into five stages. Besides, diameter difference on rivet tail and interference value on upper sheet hole wall were selected as indicators to evaluate quality of joints. And a group of parameters is obtained for a better quality of joints. Finally, the simulation results were validated through experiments.


Processes ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 1664
Author(s):  
Haocen Hong ◽  
Chunxiao Zhao ◽  
Bin Zhang ◽  
Dapeng Bai ◽  
Huayong Yang

The triangular damping groove on the valve plate can effectively reduce the discharge flow ripple of an axial piston pump, which structural parameters will directly affect the pump’s dynamic characteristics. Herein, a multi-parameter data-based structure optimizing method of the triangular damping groove is investigated using numerical models and simulation results. The mathematical models of a nine-piston pump are proposed and developed by MATLAB/Simulink, and the simulation results are verified by experimental results. Then, the effects of width angle and depth angle on discharge flow are analyzed. Based on the analysis of groove parameters, an optimizing index, which considering the time domain characteristics of discharge flow, is proposed. As results show, comparing with the initial specific groove structure, the amplitude of flow ripple is reduced from 14.6% to 9.8% with the optimized structure. The results demonstrate that the outlet flow ripple can be significantly reduced by the optimized structure, and the proposed multi-parameter optimizing method can play a guiding significance in the design of low-ripple axial piston pumps.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Hao Ding ◽  
Xinghong Jiang ◽  
Ke Li ◽  
Hongyan Guo ◽  
Wenfeng Li

Tunnel lining crack is the most common disease and also the manifestation of other diseases, which widely exists in plain concrete lining structure. Proper evaluation and classification of engineering conditions directly relate to operation safety. Particle flow code (PFC) calculation software is applied in this study, and the simulation reliability is verified by using the laboratory axial compression test and 1 : 10 model experiment to calibrate the calculation parameters. Parameter analysis is carried out focusing on the load parameters, structural parameters, dimension, and direction which affect the crack diseases. Based on that, an evaluation index system represented by tunnel buried depth (H), crack position (P), crack length (L), crack width (W), crack depth (D), and crack direction (A) is put forward. The training data of the back propagation (BP) neural network which takes load-bearing safety and crack stability as the evaluation criteria are obtained. An expert system is introduced into the BP neural network for correction of prediction results, realizing classified dynamic optimization of complex engineering conditions. The results of this study can be used to judge the safety state of cracked lining structure and provide guidance to the prevention and control of crack diseases, which is significant to ensure the safety of tunnel operation.


Author(s):  
T. Q. Ma ◽  
K. T. Ooi ◽  
T. N. Wong

This paper presents simulation results on the geometrical optimization design of bare tube heat exchangers. By linking a mathematical model with an optimization alogorithm, it is possible to predict which combination of five geometrical variables would produce a given coil capacity of a heat exchanger, the minimum core volume size operating at the minimum pressure drop. A constrained multivariable direct search technique is used in which the five geometrical variables and a mixture of five explicit and implicit constraints are accommodated. Using this design method, three typical sizes of bare tube optimization cases have been studied. The simulation results predict significant performance improvements for heat exchanger design. The range of tube outer diameter in this optimization study is from 4.9 to 9.0 mm.


2009 ◽  
Vol 79-82 ◽  
pp. 1679-1682
Author(s):  
Wen Juan Huang ◽  
Chun Hua Lu ◽  
Wei Min Tan ◽  
Yan Zhang ◽  
Zhong Zi Xu

In this paper, setting 1.06 μm Gaussian modulated pulse electromagnetic wave as irradiation sources, the influences of structural parameters on reflectivity are analyzed by finite different time domain (FDTD) method. The results show that the filled factor and height are key factors for circular tube relief structure with non absorption. The optimal height could be set to 0.2 μm, which is one odd time of the ratio of incident wavelength λ and four equivalent refractive index 4N, then the best filled factor is between 0.7 and 0.9, the ratio of inner and outer diameter could be set between 0.4 and 0.6, and the structure period has little significant influence. Compared with cylinder solid structure, it has been discovered that circular tube hollow structure could weaken the backward energy of electromagnetic wave, and it would be more suitable for antireflection structure than solid cylinder structure. Moreover, we design two another circular tube relief structures simulations with different extinction coefficients, it is found that the reflectivities are lower up to 0.00016% than the non absorption one.


2014 ◽  
Vol 552 ◽  
pp. 179-182
Author(s):  
Jun Xie ◽  
Hui Deng ◽  
Qi Zhi Yang ◽  
Yue Liu

The kinematics model of the robot was established, and its structural parameters were studied. Based on coordinate transformation, the inverse solution of the robot was obtained. Its workspace was solved by MATLAB program. Three-dimensional diagram and projection drawing on XY plane of workspace were obtained. In addition, the sorting range various with the different value of Z was studied and obtained. Finally, on the premise of meeting working range of the robot, using the minimum mass of the moving parts as optimization objective, the structural parameters of the sorting robot were optimized using the search method. Simulation results show that the optimized robot can achieve the minimum weight of moving parts and meet the preset sorting range. It is also ensured the sorting flexibility.


2014 ◽  
Vol 533 ◽  
pp. 17-20
Author(s):  
De Hai Chen ◽  
Ming Hu Jiang ◽  
Li Xin Zhao ◽  
Yong Zhang

The flow field of gas-liquid-solid three-phase hydrocyclone was analyzed by using the software FLUNET. We have researched different structural parameters on the effect of degassing and degritting. The result shows that the change of inverted cone length ratio, inverted cone diameter, the form of liquid outlet hole structure and the angle of vent structure have some influence on degassing and degritting. Simulation results provides a good technical support for the optimization design of three-phase hydrocyclone structure.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5378
Author(s):  
Lin He ◽  
Shunan Zhao ◽  
Guowen Xu ◽  
Xin Wu ◽  
Junlong Xie ◽  
...  

In this study, a collaborative simulation method is proposed to predict dynamic variations of the thermal environment in an air-conditioned room. The room thermal environment was predicted and analyzed by varying the structural and control parameters of the air conditioner considering the dynamic coupling effect. Connections and regularities were established between the applicable parameters and evaluation indices of the thermal environment. The simulation results demonstrated the interactions among the system structural parameters, control parameters, and the thermal environment. Within a certain parameter range, the evaporator structure exhibited a significant effect on temperature uniformity and vertical air temperature difference, followed by predicted mean vote (PMV) and draught rate (DR). The associated evaluation indices were sensitive to fin spacing, tube spacing, and tube outer diameter, in the same order, which were structural parameters of the evaporator. The effect of the air supply angle on the vertical air temperature difference was evident; however, its influence on the PMV, DR, and temperature uniformity did not indicate consistent variations.


Author(s):  
Ying Guo ◽  
Liqin Liu ◽  
Xinxin Lv ◽  
Yougang Tang

Abstract Comparing to Φ-type and H-type VAWT (Vertical Axis Wind Turbine), the amplitude changes of the aerodynamics acting on Helical-type VAWT are much smaller, so Helical-type VAWT has advantages in steady output power and avoiding fatigue of structure. Considering the characteristic of helical-type VAWT, this paper modifies the semi empirical method of calculating aerodynamic loads and compares with CFD results. A comparison is presented between CFD results and experiment results to confirm the model used in CFD. Single parameter analysis and muti-parameters analysis are carried out to study the influence of structural parameters on the dynamic torque. Based on an objective output power as 5MW, the parameters of wind turbine are adjusted, and optimal values of these parameters are determined.


Sign in / Sign up

Export Citation Format

Share Document