Structural Optimization of Three Translational Parallel Sorting Robot

2014 ◽  
Vol 552 ◽  
pp. 179-182
Author(s):  
Jun Xie ◽  
Hui Deng ◽  
Qi Zhi Yang ◽  
Yue Liu

The kinematics model of the robot was established, and its structural parameters were studied. Based on coordinate transformation, the inverse solution of the robot was obtained. Its workspace was solved by MATLAB program. Three-dimensional diagram and projection drawing on XY plane of workspace were obtained. In addition, the sorting range various with the different value of Z was studied and obtained. Finally, on the premise of meeting working range of the robot, using the minimum mass of the moving parts as optimization objective, the structural parameters of the sorting robot were optimized using the search method. Simulation results show that the optimized robot can achieve the minimum weight of moving parts and meet the preset sorting range. It is also ensured the sorting flexibility.

2016 ◽  
Vol 11 (1) ◽  
pp. 155892501601100
Author(s):  
Lanming Jin ◽  
Gaoming Jiang ◽  
Honglian Cong ◽  
Chenguang Hou

Jacquard quilted structure weft-knitted fabrics have many advantages, such as strong stereoscopic patterns, soft handling, adjustable apparel thickness, and use as home textiles. However, the final visual effects of such fabrics are difficult to predict prior to processing because of the rough surface caused by the connecting yarn and the inlay yarn of the fabric. This research applied a three-dimensional (3D) model instead of the original single-loop model to simulate knitted fabric. The 3D model is more suitable for a multilayer fabric because the simulation is quick, real, and convenient. The article includes experiments on structural parameters concerning regular dents of different samples, analysis of parameter data about the surface, and the simulation process with the objective of understanding the computer simulation of fabric. Results show good correlation between the simulation results and the actual fabric. Importantly, we can clearly see the expected effects in the fabrics without going through production and processing. This research will be useful for establishing a quick computer-generated simulation system for multilayer fabrics.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rino Saiga ◽  
Masayuki Uesugi ◽  
Akihisa Takeuchi ◽  
Kentaro Uesugi ◽  
Yoshio Suzuki ◽  
...  

AbstractBrain blood vessels constitute a micrometer-scale vascular network responsible for supply of oxygen and nutrition. In this study, we analyzed cerebral tissues of the anterior cingulate cortex and superior temporal gyrus of schizophrenia cases and age/gender-matched controls by using synchrotron radiation microtomography or micro-CT in order to examine the three-dimensional structure of cerebral vessels. Over 1 m of cerebral blood vessels was traced to build Cartesian-coordinate models, which were then used for calculating structural parameters including the diameter and curvature of the vessels. The distribution of vessel outer diameters showed a peak at 7–9 μm, corresponding to the diameter of the capillaries. Mean curvatures of the capillary vessels showed a significant correlation to the mean curvatures of neurites, while the mean capillary diameter was almost constant, independent of the cases. Our previous studies indicated that the neurites of schizophrenia cases are thin and tortuous compared to controls. The curved capillaries with a constant diameter should occupy a nearly constant volume, while neurons suffering from neurite thinning should have reduced volumes, resulting in a volumetric imbalance between the neurons and the vessels. We suggest that the observed structural correlation between neurons and blood vessels is related to neurovascular abnormalities in schizophrenia.


Aerospace ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 97
Author(s):  
Junfeng Sun ◽  
Meihong Liu ◽  
Zhen Xu ◽  
Taohong Liao ◽  
Xiangping Hu ◽  
...  

A new type of cylindrical gas film seal (CGFS) with a flexible support is proposed according to the working characteristics of the fluid dynamic seal in high-rotational-speed fluid machinery, such as aero-engines and centrifuges. Compared with the CGFS without a flexible support, the CGFS with flexible support presents stronger radial floating characteristics since it absorbs vibration and reduces thermal deformation of the rotor system. Combined with the structural characteristics of a film seal, an analytical model of CGFS with a flexible wave foil is established. Based on the fluid-structure coupling analysis method, the three-dimensional flow field of a straight-groove CGFS model is simulated to study the effects of operating and structural parameters on the steady-state characteristics and the effects of gas film thickness, eccentricity, and the number of wave foils on the equivalent stress of the flexible support. Simulation results show that the film stiffness increases significantly when the depth of groove increases. When the gas film thickness increases, the average equivalent stress of the flexible support first decreases and then stabilizes. Furthermore, the number of wave foils affects the average foils thickness. Therefore, when selecting the number of wave foils, the support stiffness and buffer capacity should be considered simultaneously.


Author(s):  
Chenqi Zhu

In order to improve the guiding accuracy in intercepting the hypersonic vehicle, this article presents a finite-time guidance law based on the observer and head-pursuit theory. First, based on a two-dimensional model between the interceptor and target, this study applies the fast power reaching law to head-pursuit guidance law so that it can alleviate the chattering phenomenon and ensure the convergence speed. Second, target maneuvers are considered as system disturbances, and the head-pursuit guidance law based on an observer is proposed. Furthermore, this method is extended to a three-dimensional case. Finally, comparative simulation results further verify the superiority of the guidance laws designed in this article.


2014 ◽  
Vol 940 ◽  
pp. 433-436 ◽  
Author(s):  
Ying Zhang ◽  
Xin Shi

Based on the detailed analysis of the STL file format, VC++ 6.0 programming language was used to extract the STL ASCII and binary file information, at the same time, using the OpenGL triangle drawing technology for graphical representation of the STL file, with rendering functions such as material, coordinate transformation, lighting, et al, finally realizing the loading and three-dimensional display of STL ASCII and binary file formats.


1995 ◽  
Vol 291 ◽  
pp. 369-392 ◽  
Author(s):  
Ronald D. Joslin

The spatial evolution of three-dimensional disturbances in an attachment-line boundary layer is computed by direct numerical simulation of the unsteady, incompressible Navier–Stokes equations. Disturbances are introduced into the boundary layer by harmonic sources that involve unsteady suction and blowing through the wall. Various harmonic-source generators are implemented on or near the attachment line, and the disturbance evolutions are compared. Previous two-dimensional simulation results and nonparallel theory are compared with the present results. The three-dimensional simulation results for disturbances with quasi-two-dimensional features indicate growth rates of only a few percent larger than pure two-dimensional results; however, the results are close enough to enable the use of the more computationally efficient, two-dimensional approach. However, true three-dimensional disturbances are more likely in practice and are more stable than two-dimensional disturbances. Disturbances generated off (but near) the attachment line spread both away from and toward the attachment line as they evolve. The evolution pattern is comparable to wave packets in flat-plate boundary-layer flows. Suction stabilizes the quasi-two-dimensional attachment-line instabilities, and blowing destabilizes these instabilities; these results qualitatively agree with the theory. Furthermore, suction stabilizes the disturbances that develop off the attachment line. Clearly, disturbances that are generated near the attachment line can supply energy to attachment-line instabilities, but suction can be used to stabilize these instabilities.


2012 ◽  
Vol 217-219 ◽  
pp. 1998-2001
Author(s):  
Tie Geng ◽  
Qing Hai Ren ◽  
Wei Qing Tu ◽  
Dan Dan Liu

According to the color contour map of the 3D injection molding simulation results, the commonly used color contour map drawing algorithm was researched, and a three-dimensional color image rendering algorithm which based on the "physical field values and color range mapping" was given too. And the key technologies of the algorithm which was used to draw 3D color contour map were introduced in detail. In the end, an example was given.


Buildings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 90
Author(s):  
Francesco Cascone ◽  
Diana Faiella ◽  
Valentina Tomei ◽  
Elena Mele

An innovative generative design strategy, based on shape grammar, is proposed for the minimum-weight design of diagrid tall buildings. By considering the building as a three-dimensional vertical cantilever beam with a tubular section under horizontal load, it is evident that bending and shear stiffness demands vary along the width and elevation of the building. Further, while the structural design of tall buildings is usually governed by stiffness, the predominant design criterion for diagrids could be the local strength demand, especially for low slenderness values, thanks to the inherent rigidity of the triangular pattern. Starting from these considerations, in this paper, a generative design strategy is proposed, able to find diagrid patterns that accommodate the differentiated stiffness demand along width/elevation and satisfy the predominant design criterion, stiffness or strength. The design strategy is applied to tall building models characterised by different slenderness values. The comparison to diagrid patterns analysed in previous literature works in terms of structural weight and performance parameters highlights the effectiveness of the design strategy and the efficiency of the generated patterns.


Author(s):  
Muhammad Usman Sheikh ◽  
Kalle Ruttik ◽  
Riku Jäntti ◽  
Jyri Hämäläinen

AbstractThe aim of this work is to study the impact of small receiver displacement on a signal propagation in a typical conference room environment at a millimeter wave frequency of 60 GHz. While channel measurements provide insights on the propagation phenomena, their use for the wireless system performance evaluation is challenging. Whereas, carefully executed three-dimensional ray tracing (RT) simulations represent a more flexible option. Nevertheless, a careful validation of simulation methodology is needed. The first target of this article is to highlight the benefits of an in-house built three-dimensional RT tool at 60 GHz and shows the effectiveness of simulations in predicting different characteristics of the channel. To validate the simulation results against the measurements, two different transmitter (Tx) positions and antenna types along with ten receiver (Rx) positions are considered in a typical conference room. In first system configuration, an omnidirectional antenna is placed in the middle of the table, while in the second system configuration a directed horn antenna is located in the corner of the meeting room. After validating the simulation results with the measurement data, in the second part of this work, the impact of a small change, i.e., 20 cm in the receiver position, is studied. To characterize the impact, we apply as performance indicators the received power level, root mean square delay spread (RMS-DS) and RMS angular spread (RMS-AS) in azimuth plane. The channel characteristics are considered with respect to the direct orientation (DO), i.e., the Rx antenna is directed toward the strongest incoming path. Different antenna configurations at the Tx and Rx side are applied to highlight the role of antenna properties on the considered channel characteristics. Especially, in the second system configuration the impact of different antenna half power beamwidth on different considered channel characteristics is highlighted through acquired simulation results. The validation of results shows the RMS error of only 2–3 dB between the measured and simulated received power levels for different Tx configurations in the direction of DO. Results indicate that only a small change of the Rx position may result a large difference in the received power level even in the presence of line-of-sight between the Tx and Rx. It is found that the STD of received power level across the room increases with the decrease in HPBW of the antenna. As can be expected, directed antennas offer lower value of RMS-DS and RMS-AS compared with isotropic antenna.


Sign in / Sign up

Export Citation Format

Share Document