scholarly journals Comparative Study on Transmission Performance of Manganese Phosphate Coated Gears

Coatings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1026
Author(s):  
Guangxin Li ◽  
Yong Chen ◽  
Libin Zang ◽  
Rui Liu ◽  
Dongying Ju ◽  
...  

As an important part of transmission systems, coatings can improve the physical properties of gear surface. It is meaningful to research the effect of coating on the transmission performance of gears. In this paper, eight-degree-of-freedom dynamic response model of helical cylindrical gear is established considering friction, and the influence of friction factors on dynamic response is explored. The tribological properties and lubrication characteristics of the coating are investigated and compared with uncoated. The transmission performances of manganese phosphate conversion coated gears are studied experimentally. The results show that the coefficients of friction of Mn–P[C] coatings are reduced by 19%, the average amplitude and root mean square of vibration acceleration are obviously decreased, and the transmission efficiency is improved. The manganese phosphate conversion coating is beneficial to the transmission performance of gears.

Author(s):  
PS Suresh ◽  
Niranjan K Sura ◽  
K Shankar

The dynamic responses simulation of aircraft as rigid body considering heave, pitch, and roll motions, coupled onto a tricycle landing gear arrangement is presented. Equation of motion for each landing gear consists of un-sprung mass vertical and longitudinal motions considering strut nonlinear stiffness and damping combined with strut bending flexibility. Initially, the nonlinear dynamic response model is subjected to an input of riding over staggered bump and the responses are compared with linear landing gear model. It is observed that aircraft dynamics and important landing gear events such as vertical, spin-up and spring-back are truly represented with nonlinear stiffness and damping model considering strut bending flexibility. Later, landing response analysis is performed, with the input from nonlinear flight mechanics model for several vertical descent rate cases. The aircraft and landing gear dynamic responses such as displacement, velocity, acceleration, and reaction forces are obtained. The vertical and longitudinal drag forces from the nonlinear dynamic response model is compared with “Book-case method” outlined in landing gear design technical specifications. From the reaction force ratio calculation, it is shown that for lower vertical descent rate case the predicted loads are lesser using nonlinear dynamic response model. The same model for higher vertical descent rate cases predicts higher ratios on vertical reaction for main landing gear and longitudinal reaction for nose landing gear, respectively. The scope for increase in fatigue life for low vertical descent rate landing covering major design spectrum and the concern for static strength and structural integrity consideration for higher vertical descent rate cases are discussed in the context of event monitoring on aircraft in services.


2014 ◽  
Vol 505-506 ◽  
pp. 58-63
Author(s):  
Xiao Chuan Ma ◽  
Wei Luo ◽  
Ping Wang ◽  
Bao Ru Guo

A vehicle-track-subgrade coupling vibration system model was proposed to analysis the influence of cell plate length to slab track vertical dynamic response. The model was built with finite element method, rail was modeled as space beam element, both track plate and base plate were modeled as shell element, the vertical connections between rail, slab and subgrade were modeled as spring-damper element. The results show that with the cell plate length increases, the vertical vibration displacement of rail, track plate and base plate have decreasing tendency; the vertical vibration acceleration of rail has increasing tendency; the vertical vibration acceleration of track plate and base plate have decreasing tendency.


2010 ◽  
Vol 439-440 ◽  
pp. 1081-1086
Author(s):  
Hua Qing Zhou ◽  
Sheng Hui Dai

Header compression can effectively improve transmission efficiency, but existing header compression algorithm reduces the performance when operating over wireless links, because the differencing coding that the algorithm used does not adapt to packet over LAN. A new method for IPv6 header compression named is proposed, the compression is based on substitution and is not affected by packet loss. The method can significant improve the transmission performance over LAN.


2008 ◽  
Vol 128 (2) ◽  
pp. 462-467 ◽  
Author(s):  
J. Guérin ◽  
M. Bendahan ◽  
K. Aguir

2010 ◽  
Vol 63 (4) ◽  
pp. 627-643 ◽  
Author(s):  
Mohammed El-Diasty ◽  
Spiros Pagiatakis

We develop a new frequency-domain dynamic response method to model integrated Inertial Navigation System (INS) and Global Positioning System (GPS) architectures and provide an accurate impulse-response-based INS-only navigation solution when GPS signals are denied (GPS outages). The input to such a dynamic system is the INS-only solution and the output is the INS/GPS integration solution; both are used to derive the transfer function of the dynamic system using Least Squares Frequency Transform (LSFT). The discrete Inverse Least Squares Frequency Transform (ILSFT) of the transfer function is applied to estimate the impulse response of the INS/GPS system in the time domain. It is shown that the long-term motion dynamics of a DQI-100 IMU/Trimble BD950 integrated system are recovered by 72%, 42%, 75%, and 40% for north and east velocities, and north and east positions respectively, when compared with the INS-only solution (prediction mode of the INS/GPS filter). A comparison between our impulse response model and the current state-of-the-art time-domain feed-forward neural network shows that the proposed frequency-dependent INS/GPS response model is superior to the neural network model by about 26% for 2D velocities and positions during GPS outages.


Sankhya A ◽  
2019 ◽  
Vol 82 (1) ◽  
pp. 186-219
Author(s):  
R. Prabhakar Rao ◽  
Brajendra C. Sutradhar

2011 ◽  
Vol 243-249 ◽  
pp. 2581-2585
Author(s):  
Yan Hua She ◽  
Hua You Su ◽  
Zheng Xue Xiao

By use of the microseismic monitoring system, the dynamic response of punched pile construction of bridge pile foundation is studied and discussed for the first time. Wave data of loads acting on the construction is group-collected by means of the microseismic experiment on site. Then the waveform, vibration frequency and energy of testing data are analyzed. On the basis of the results, the weaken rules of vibration acceleration and energy are studied, and the effect of impact energy on the vibration velocity is analyzed. It shows that impact energy attenuates exponentially with the distance from the epicentre. The conclusion establishes the theoretical basis for studying the vibrant characteristic of punched pile construction, and provides valuable reference for engineering practice to take effective measures to reduce construction vibration.


Sign in / Sign up

Export Citation Format

Share Document