Influence Analysis of Cell Plate Length to Slab Track Vertical Dynamic Response

2014 ◽  
Vol 505-506 ◽  
pp. 58-63
Author(s):  
Xiao Chuan Ma ◽  
Wei Luo ◽  
Ping Wang ◽  
Bao Ru Guo

A vehicle-track-subgrade coupling vibration system model was proposed to analysis the influence of cell plate length to slab track vertical dynamic response. The model was built with finite element method, rail was modeled as space beam element, both track plate and base plate were modeled as shell element, the vertical connections between rail, slab and subgrade were modeled as spring-damper element. The results show that with the cell plate length increases, the vertical vibration displacement of rail, track plate and base plate have decreasing tendency; the vertical vibration acceleration of rail has increasing tendency; the vertical vibration acceleration of track plate and base plate have decreasing tendency.

2014 ◽  
Vol 1065-1069 ◽  
pp. 388-392
Author(s):  
Heng Zhang ◽  
Miao Miao Huo ◽  
Lei Meng ◽  
Xiao Shi An

Through site test, the paper conducts site test to vertical vibration accelerations when a train passes through steel rails and tunnel walls at a steel spring floating slab track section and a general track section in the tunnel of Yizhuang Line of Beijing Metro. The paper also conducts comparative analysis of the accelerations in time domain and frequency domain. It is shown in results that the vibration acceleration level of the steel spring floating slab track in time domain is reduced by 22 dB in tunnel walls in comparison with the general track; in the frequency domain, the vibration effect is gradually increased with frequency increase and reaches the optimal effect in medium-high frequency. The maximum vibration attenuation quantity of frequency division reaches up to 40 dB; and the maximum Z weighted vibration acceleration level is reduced by 22 dB.


2012 ◽  
Vol 226-228 ◽  
pp. 802-806
Author(s):  
Su Xia Zhou ◽  
Teng Long ◽  
Yun Ye Xie ◽  
Ji Long Xie

In order to study the dynamic response characteristics of depressed center flat car with different velocity, based on multi-body system dynamics software SIMPACK, 320t depressed center flat car system rigid body and rigid-flexible coupling-body dynamics model were established and the dynamic response simulation analysis of empty and loaded flat was carried out under several velocities. Then maximal vertical vibration displacement amplitudes and vertical vibration accelerations of depressed centre flat frame under different velocities were obtained. It showed that the maximum accelerations and displacements amplitudes increase with as the speed gradually increased for both empty and heavy vehicles and the trends are similar for the rigid body or rigid-flexible coupling-body. But the values of rigid-flexible coupling-body are bigger than that of rigid body because the elastic vibrations from the depressed center flat frame and all levels of suspension contribut to the vertical displacement. As the speed increases, the vertical displacements of the rigid-flexible coupling-body and the elastic ones response synchronously. The vertical displacements of the empty and heavy vehicles reach their peak values at different speeds and the elastic displacement also has a large proportion, which shows that there are larger elastic vibrations at the speeds. Therefore, it is not suitable for the depressed centre flat to run at very high speeds, and the speed should be confined.


2021 ◽  
Vol 11 (8) ◽  
pp. 3520
Author(s):  
Xiaopei Cai ◽  
Qian Zhang ◽  
Yanrong Zhang ◽  
Qihao Wang ◽  
Bicheng Luo ◽  
...  

In order to find out the influence of subgrade frost heave on the deformation of track structure and track irregularity of high-speed railways, a nonlinear damage finite element model for China Railway Track System III (CRTSIII) slab track subgrade was established based on the constitutive theory of concrete plastic damage. The analysis of track structure deformation under different subgrade frost heave conditions was focused on, and amplitude the limit of subgrade frost heave was put forward according to the characteristics of interlayer seams. This work is expected to provide guidance for design and construction. Subgrade frost heave was found to cause cosine-type irregularities of rails and the interlayer seams in the track structure, and the displacement in lower foundation mapping to rail surfaces increased. When frost heave occured in the middle part of the track slab, it caused the greatest amount of track irregularity, resulting in a longer and higher seam. Along with the increase in frost heave amplitude, the length of the seam increased linearly whilst its height increased nonlinearly. When the frost heave amplitude reached 35 mm, cracks appeared along the transverse direction of the upper concrete surface on the base plate due to plastic damage; consequently, the base plate started to bend, which reduced interlayer seams. Based on the critical value of track structures’ interlayer seams under different frost heave conditions, four control limits of subgrade frost heave at different levels of frost heave amplitude/wavelength were obtained.


Soft Matter ◽  
2017 ◽  
Vol 13 (39) ◽  
pp. 7034-7045 ◽  
Author(s):  
Li Li ◽  
Ping Wu ◽  
Shiping Zhang ◽  
Li Wang

Various patterns of vertical, horizontal, and 3D distributions of binary particles are studied under coupling vertical vibration and airflow.


2021 ◽  
pp. 107754632110598
Author(s):  
Hao Jin ◽  
Hongying Wang ◽  
Zheng Li ◽  
Xin Zhou

With the continuous increase of subway operating mileage, the problem of subway vibration has become more and more significant. Nowadays, the point-supported floating-slab track is recognized as the best method to control track vibration, which is mainly designed based on the mass-spring-damping theory. How to further improve the vibration control ability of the point-supported floating-slab track? In this paper, a new type of rubber point-supported floating slab track is designed based on the local resonance theory. Through calculation and dynamic test, it is obtained as follows: (1) The band gap of the point support structure by local resonance type depends on the two vertical vibration modes. (2) As the elastic modulus of the cladding layer increases, the bandwidth of the band gap of the corresponding structure increases significantly. (3) The increase of the vibrator density can increase the bandwidth, while reducing the start and stop frequencies, which is beneficial to attenuate the resonance of the floating-slab track. (4) The cushion material parameters of point support structure by local resonance type 2 will not affect the band gap. The increase in sleeve density will reduce the band gap, which is not conducive to vibration reduction. Local resonance type floating-slab track will be the development direction of track vibration-reduction measures in the future.


Actuators ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 42 ◽  
Author(s):  
Keigo Ikeda ◽  
Ayato Endo ◽  
Ryosuke Minowa ◽  
Takayoshi Narita ◽  
Hideaki Kato

Active seat suspension has been proposed to improve ride comfort for ultra-compact mobility. Regarding the ride comfort of passengers due to vertical vibration, the authors have confirmed from biometry measurements that reduction of the vibration acceleration does not always produce the best ride comfort for passengers. Therefore, heart rate variability that can quantitatively reflect stress is measured in real time, and a control method was proposed that feeds back to active suspension and confirms its effectiveness by fundamental verification. In this paper, we will confirm the influence of the vibration stress on the psychological state of the occupant by the masking method.


2011 ◽  
Vol 243-249 ◽  
pp. 4307-4310
Author(s):  
Yuan Zhang ◽  
Wei Lin ◽  
Ze Ming Wang

In this paper, models for vertical and spatial coupling vibration of vehicle-track-bridge system are established separately. The track vertical irregularity sample in time domain is established by power spectrum density and taken as the exciting source to analyze the coupling vibration of vehicle-track-bridge system of two models. The advantages and disadvantages and applicability of the vertical vibration model and the spatial vibration model are analyzed by comparing the vertical vibration responses of the two models under excitation with same level of track vertical irregularity.


2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
Guodong Deng ◽  
Jiasheng Zhang ◽  
Wenbing Wu ◽  
Xiong Shi ◽  
Fei Meng

By introducing the fictitious soil-pile model, the soil-pile interaction in the pile vertical vibration is investigated. Firstly, assuming the surrounding soil of pile to be viscoelastic material and considering its vertical wave effect, the governing equations of soil-pile system subjected to arbitrary harmonic dynamic force are founded based on the Euler-Bernoulli rod theory. Secondly, the analytical solution of velocity response in frequency domain and its corresponding semianalytical solution of velocity response in time domain are derived by means of Laplace transform technique and separation of variables technique. Based on the obtained solutions, the influence of parameters of pile end soil on the dynamic response is studied in detail for different designing parameters of pile. Lastly, the fictitious soil-pile model and other pile end soil supporting models are compared. It is shown that the dynamic response obtained by the fictitious soil-pile model is among the dynamic responses obtained by other existing models if there are appropriate material parameters and thickness of pile end soil for the fictitious soil-pile model.


Sign in / Sign up

Export Citation Format

Share Document