scholarly journals Sputter-Deposited Cr–Ag Films for Environmental Antimicrobial Applications

Coatings ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1153
Author(s):  
Lijun Wang ◽  
Yingjie Wang ◽  
Powan Shum ◽  
Yuefeng Hou ◽  
Tao Fu

Chromium–silver films with ≤ 39.2 at.% Ag were deposited by magnetron sputtering for antibacterial applications. X-ray diffraction and scanning electron microscopy analyses indicate that the films consist of Cr and Ag, and silver segregation is not obvious at the surface. The films are hard (628–968 HV0.001) and hydrophobic with low surface energy (12.8–26.8 mJ/m2). The drying time of water droplets is dependent on ambient conditions, material wettability and droplet size. The test against Escherichia coli indicates antibacterial ratios of 100% for the Cr–Ag films (action time 3 h). However, bacteria died within 15 min due to quick drying of the bacterial suspension in open ambient conditions. The Cr–Ag films would have potential antimicrobial applications in public environmental facilities.

1994 ◽  
Vol 339 ◽  
Author(s):  
A. Bachli ◽  
J. S. Chen ◽  
R. P. Ruiz ◽  
M-A. Nicolet

ABSTRACTThe thermally induced solid-phase reaction of 135 nm thick sputter-deposited W films with polycrystalline CVD-grown diamond substrates is investigated. The samples are annealed in vacuum (5×10/-7 torr) at temperatures between 700 °C and 1100 °C for 1 hour and examined by 2 MeV 4He++ backscattering spectrometry, x-ray diffraction, and scanning electron microscopy.The as-deposited W films contain roughly 5 at.% oxygen. After annealing the samples at 800 °C this oxygen concentration falls below the detection limit of less than 1 %. Incipient W2C phase formation occurs during annealing at 900 °C. The final state, the WC phase, is reached after annealing at 1100 °C.


1986 ◽  
Vol 39 (6) ◽  
pp. 827 ◽  
Author(s):  
GD Campbell ◽  
FJ Lincoln ◽  
IM Ritchie

Kinetic experiments are reported on the chemical formation of AgI layers on polycrystalline silver substrates. The AgI layers, up to several micrometres in average thickness, were grown under ambient conditions by reacting a rotating silver disc with solutions of iodine dissolved in ethanol and with aqueous triiodide solutions. The morphology and structural identity of the AgI layers were determined by scanning electron microscopy and powder X-ray diffraction, respectively. Depending upon the growth conditions employed, either porous or compact AgI deposits could result, and thus the rate of formation of AgI could be limited by a diffusion step in solution, or by some slower transport step across the layers. The AgI layers were inhomogeneous, and often consisted of discrete crystallites. Thus, the metal oxidation theories developed for planar and isotropic product layers could not be applied to the formation of AgI layers under ambient conditions.


2011 ◽  
Vol 311-313 ◽  
pp. 1810-1813 ◽  
Author(s):  
Hao Liang Sun ◽  
Ming Wei

Tantalum (Ta) thin film was deposited onto Si (100) substrates using direct-current magnetron sputtering. The structure and mechanical properties of Ta films were investigated by X-ray diffraction, Field emission scanning electron microscope, and nanoindenter. The results indicated a transition from regular to irregular Hall-Petch relationship with decreasing grain size. Besides, a peak indentation hardness value of 12.8 GPa, much higher than that of bulk coarse-grained Ta, was obtained at the grain size of 36.3 nm.


2021 ◽  
pp. 1-3
Author(s):  
Jafarli Rufat ◽  

We have explored various solution- processing techniques to produce ZnS thin films on conducting (ITO) and silicon substrates along with ZnS-porous silicon composite films. All these samples obtained from different methods and chemical recipes were annealed under fixed ambient conditions and characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and ultraviolet photocurrent response. Various characterizations reveal that the fabrication conditions and intrinsic defects of ZnS play a vital role in optoelectronic performance.


Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


Author(s):  
Vicki L. Baliga ◽  
Mary Ellen Counts

Calcium is an important element in the growth and development of plants and one form of calcium is calcium oxalate. Calcium oxalate has been found in leaf seed, stem material plant tissue culture, fungi and lichen using one or more of the following methods—polarized light microscopy (PLM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and x-ray diffraction.Two methods are presented here for qualitatively estimating calcium oxalate in dried or fixed tobacco (Nicotiana) leaf from different stalk positions using PLM. SEM, coupled with energy dispersive x-ray spectrometry (EDS), and powder x-ray diffraction were used to verify that the crystals observed in the dried leaf with PLM were calcium oxalate.


Author(s):  
R. J. Narconis ◽  
G. L. Johnson

Analysis of the constituents of renal and biliary calculi may be of help in the management of patients with calculous disease. Several methods of analysis are available for identifying these constituents. Most common are chemical methods, optical crystallography, x-ray diffraction, and infrared spectroscopy. The application of a SEM with x-ray analysis capabilities should be considered as an additional alternative.A scanning electron microscope equipped with an x-ray “mapping” attachment offers an additional dimension in its ability to locate elemental constituents geographically, and thus, provide a clue in determination of possible metabolic etiology in calculus formation. The ability of this method to give an undisturbed view of adjacent layers of elements in their natural state is of advantage in determining the sequence of formation of subsequent layers of chemical constituents.


Author(s):  
Howard S. Kaufman ◽  
Keith D. Lillemoe ◽  
John T. Mastovich ◽  
Henry A. Pitt

Gallstones contain precipitated cholesterol, calcium salts, and proteins. Calcium (Ca) bilirubinate, palmitate, phosphate, and carbonate occurring in gallstones have variable morphologies but characteristic windowless energy dispersive x-ray (EDX) spectra. Previous studies of gallstone microstructure and composition using scanning electron microscopy (SEM) with EDX have been limited to dehydrated samples. In this state, Ca bilirubinates appear as either glassy masses, which predominate in black pigment stones, or as clusters, which are found mostly in cholesterol gallstones. The three polymorphs of Ca carbonate, calcite, vaterite, and aragonite, have been identified in gallstones by x-ray diffraction, however; the morphologies of these crystals vary in the literature. The purpose of this experiment was to study fresh gallstones by environmental SEM (ESEM) to determine if dehydration affects gallstone Ca salt morphology.Gallstones and bile were obtained fresh at cholecystectomy from 6 patients. To prevent dehydration, stones were stored in bile at 37°C. All samples were studied within 4 days of procurement.


Author(s):  
F. Ma ◽  
S. Vivekanand ◽  
K. Barmak ◽  
C. Michaelsen

Solid state reactions in sputter-deposited Nb/Al multilayer thin films have been studied by transmission and analytical electron microscopy (TEM/AEM), differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The Nb/Al multilayer thin films for TEM studies were sputter-deposited on (1102)sapphire substrates. The periodicity of the films is in the range 10-500 nm. The overall composition of the films are 1/3, 2/1, and 3/1 Nb/Al, corresponding to the stoichiometric composition of the three intermetallic phases in this system.Figure 1 is a TEM micrograph of an as-deposited film with periodicity A = dA1 + dNb = 72 nm, where d's are layer thicknesses. The polycrystalline nature of the Al and Nb layers with their columnar grain structure is evident in the figure. Both Nb and Al layers exhibit crystallographic texture, with the electron diffraction pattern for this film showing stronger diffraction spots in the direction normal to the multilayer. The X-ray diffraction patterns of all films are dominated by the Al(l 11) and Nb(l 10) peaks and show a merging of these two peaks with decreasing periodicity.


MRS Advances ◽  
2020 ◽  
Vol 5 (61) ◽  
pp. 3141-3152
Author(s):  
Alma C. Chávez-Mejía ◽  
Génesis Villegas-Suárez ◽  
Paloma I. Zaragoza-Sánchez ◽  
Rafael Magaña-López ◽  
Julio C. Morales-Mejía ◽  
...  

AbstractSeveral photocatalysts, based on titanium dioxide, were synthesized by spark anodization techniques and anodic spark oxidation. Photocatalytic activity was determined by methylene blue oxidation and the catalytic activities of the catalysts were evaluated after 70 hours of reaction. Scanning Electron Microscopy and X Ray Diffraction analysis were used to characterize the catalysts. The photocatalyst prepared with a solution of sulfuric acid and 100 V presented the best performance in terms of oxidation of the dye (62%). The electric potential during the synthesis (10 V, low potential; 100 V, high potential) affected the surface characteristics: under low potential, catalyst presented smooth and homogeneous surfaces with spots (high TiO2 concentration) of amorphous solids; under low potential, catalyst presented porous surfaces with crystalline solids homogeneously distributed.


Sign in / Sign up

Export Citation Format

Share Document